
MICE ANALYSIS USER SOFTWARE

DURGA RAJARAM
ILLINOIS INSTITUTE OF TECHNOLOGY, CHICAGO

ADAM DOBBS
IMPERIAL COLLEGE, LONDON OCTOBER 10, 2016

CHEP 2016

SAN FRANCISCO

OUTLINE

•  MICE
•  Software Requirements
•  Implementation
– Design
– Framework
– Online

•  Performance
•  Conclusions

October	10,	2016	 CHEP	2016	 2	

MUON IONIZATION COOLING EXPERIMENT

October	10,	2016	 CHEP	2016	 3	

•  Muon cooling: essential for future high-luminosity μ-colliders & high-intensity ν-factories
•  μ from π decays have large emittance & must be cooled (reduce phase space volume)
•  Traditional beam cooling techniques too slow due to the short μ lifetime
•  Ionization Cooling is the only practical means:

•  Reduce momentum by dE/dX in absorber, followed by RF reacceleration to restore p||

•  Design, build & commission a realistic section of cooling channel to precisely measure emittance
reduction – Lessons => the design of a full cooling channel for a ν Factory/μ Collider

Primary
lithium-hydride

absorber

Secondary
lithium-hydride

absorber

201 MHz
cavity

201 MHz
cavity

Secondary
lithium-hydride
absorber

Electron
Muon

Ranger
(EMR)

Pre-shower
(KL)

ToF 2

Time-of-flight
hodoscope 1

(ToF 0)

Cherenkov
counters
(CKOV)

ToF 1

MICE
Muon
Beam
(MMB)

Upstream
spectrometer module

Downstream
spectrometer module

Focus-coil
module

Scintillating-fibre
tracker

Variable thickness
high-Z diffuser

Focus-coil
module

Scintillating-fibre
tracker

7th February 2015

MICE

MICE Software Goals
•  MICE is both an accelerator physics & a particle physics

experiment
–  Beam simulations, emittances, transfer matrices, Twiss parameters
–  Traditional HEP detectors: simulation, track reconstruction, particle identification
–  Need common software scope

•  Online reconstruction & monitoring during data-taking
•  Wide range of geometries, configurations to book-keep
•  Framework for analysis tools
•  Code testing, Issue tracking, documentation
•  Long-term maintainability: MICE is built & operated in stages

October	10,	2016	 CHEP	2016	 4	

DATA FLOW

October	10,	2016	 CHEP	2016	 5	

DAQ	

Unpacking	

Digi-za-on	

Geant4	
Simula-on	

Beam	
Genera-on	

Reconstruc-on	

Accelerator	Physics	

Online	/	Output	

REAL	DATA	 MONTE	CARLO	

CONFIGURATIONS	DB	
Cabling,	Calibra-ons,	

Geometry	

Note	that	reconstruc-on	is	same	

regardless	of	MC	or	real	data	

MAUS:
MICE ANALYSIS AND USER SOFTWARE

•  Design inspired by MapReduce

October	10,	2016	 CHEP	2016	 6	

•  Map
– Operate on a single

event
–  Can run in parallel
–  e.g. Simulate,

reconstruct
•  Reduce

– Operate on a
collection of events

–  e.g., Summary
histograms

MAUS DESIGN

October	10,	2016	 CHEP	2016	 7	

MAP:	SPILL	N	

DIGITIZE	SIMULATE	 RECON	

MAP:	SPILL	1	

DIGITIZE	SIMULATE	 RECON	

INPUT	 OUTPUT	

ALL	SPILLS	

REDUCE:	
PLOT..	

•  MapReduce
–  Technically, in MAUS: Input-Transform-Merge-Output

•  INPUT: Read in data
– DAQ data file, I/O stream, beam library for Monte Carlo

•  MAP: Process spills & return modified data
–  A spill is the primary data block & consists of several event triggers
– Monte Carlo simulation, Detector reconstructions
– Mappers have no internal state & can operate in parallel

•  REDUCE: Process accumulated data from all mapped spills
–  Summary histograms, run performance plots, etc

•  OUTPUT: Save data
– Write out in ROOT/JSON format

October	10,	2016	 CHEP	2016	 8	

MAUS: MICE ANALYSIS AND USER SOFTWARE

MAUS FRAMEWORK
•  Framework built on plug-in modules
•  Developers write modules in C++ or Python

–  Python for higher-level algorithms, or where development time is a factor
–  C++ for lower-level computationally intensive algorithms: particle tracking, fits,

likelihoods
–  C++11 support
–  Python-C++ bindings handled by wrappers

•  Data representation: ROOT, JSON
–  Default is ROOT, but developers find JSON quite useful for quick debugging
–  Mapper modules are templated to a data type
–  conversion between data types handled by API
–  Significant performance speedup by removing JSON-C++ conversions

October	10,	2016	 CHEP	2016	 9	

CODE MANAGEMENT
•  10-15 developers in the UK, Europe, USA

–  Headed by Adam Dobbs @ Imperial College
•  Distributed version control

–  Bazaar repository, hosted on Launchpad
•  SCons build system
•  QA:

–  Python/C++ style guidelines
–  Unit testing & integration testing
–  Code monitored for line & function coverage: aim ≥ 70% line coverage

•  Redmine wiki & issue tracker
•  Scientific Linux 6 is officially supported OS
•  Several external dependencies

–  Python, ROOT, Geant4, G4Beamline, XBoa …
–  Dependencies built as “third party” libaries during installation; build scripts come with MAUS

October	10,	2016	 CHEP	2016	 10	

CONTINUOUS INTEGRATION
•  Unit tests

–  Test individual modules/pieces
of code

•  Integration tests
–  Test if units work together and

with external libraries
•  Jenkins CI test server with

multiple slaves at RAL and
Brunel University
–  Developers run jobs on the test

servers, validate & test their
user branch before proposing to
merge in the mainline trunk

October	10,	2016	 CHEP	2016	 11	

Database
•  Varying configurations & running conditions

–  Beam momentum, cooling channel magnets, absorbers, calibrations ….
–  Must be monitored (Controls & Monitoring – EPICS) & stored

•  Configuration DB holds
–  Run conditions from data-taking
–  Beamline settings
–  Electronics cabling maps
–  Calibration constants
–  Geometry models

•  Postgres DB
•  Master DB within control-room LAN, public read-only slave at RAL
•  Most APIs in Python, some in C (multi-threaded EPICS does not like Python)
•  See talk by J. Martyniak on Wednesday

October	10,	2016	 CHEP	2016	 12	

MAUS Online
•  In classic MapReduce, map operations have to terminate before reduction
•  However, for online reconstruction:

–  Want to visualize/plot (reduce) continuously as data flows (~after each map operation)
–  Speed was also an issue with more computationally intensive modules coming into MAUS

•  New parallel C++ API developed:
–  Interfaces with MAUS modules
–  Jobs distributed by conveyer-like implementation

•  Allows either single or multi-threaded
–  Multi-threaded mode during live data-taking

October	10,	2016	 CHEP	2016	 13	

Divide and conquer
Parallel computing: the large problem can be divided into smaller ones,
which are then solved at the same time.

How does this work

MAUS is used as a third party. All original MAUS maps and reducers
are used without changing anything.

The data processing is driven by a bunch of classes written c++11.

Conveyer-like implementation of the job distribution.

The code allows for a single-thread or a multi-thread processing.

Y. Karadzhov (UNIGE - DPNC) Online Reconstruction - CM44 March 30, 2016 3 / 11

MAUS In Action

• Offline reprocessing & simulation with MAUS
performed on GRID
– Batch production & re-processing on Tier-2 sites
– MAUS installation for GRID via CVFMS at RAL

• During data-taking, ``live’’ reconstruction happens
on a dedicated resource in the control room
– Reconstruction speed ~ data-taking rate

October	10,	2016	 CHEP	2016	 14	

RECONSTRUCTION PERFORMANCE

October	10,	2016	 CHEP	2016	 15	

Time	of	Flight	e	

π	

μ	

SUMMARY	
•  MAUS provides a simulation, reconstruction, and accelerator

physics analysis framework for MICE
•  Implemented based on MapReduce
•  Online parallel processing capabilities
•  Well-defined & yet flexible framework
•  Several industry-standard QA practices adopted

–  Code coverage, continuous integration testing
•  Simulation and reconstruction software in place
•  Data-taking underway & MAUS is in action feeding analysis

October	10,	2016	 CHEP	2016	 16	

THANKS	TO	ALL	MAUS	DEVELOPERS	

October	10,	2016	 CHEP	2016	 17	

And	many	more..	

