MICE ANALYSIS USER SOFTWARE

DURGA RAJARAM
ILLINOIS INSTITUTE OF TECHNOLOGY, CHICAGO

ADAM DOBBS
IMPERIAL COLLEGE, LONDON OCTOBER 10. 2016

CHEP 2016
SAN FRANCISCO

OUTLINE

* MICE
» Software Requirements

* Implementation
— Design
— Framework
— Online

e Performance
e Conclusions

October 10, 2016 CHEP 2016 2

MUON IONIZATION COOLING EXPERIMENT

* Muon cooling: essential for future high-luminosity u -colliders & high-intensity v -factories

« U from & decays have large emittance & must be cooled (reduce phase space volume)

« Traditional beam cooling techniques too slow due to the short ¢ lifetime

* lonization Cooling is the only practical means:

* Reduce momentum by dE/dX in absorber, followed by RF reacceleration to restore p,

* Design, build & commission a realistic section of cooling channel to precisely measure emittance
reduction — Lessons => the design of a full cooling channel for a v Factory/ u Collider

Time-of-flight
hodoscope 1

(ToF 0)

MICE ¢

Muon

Beam

(MMB)

é

Cherenkov
counters
(CKOV)

MICE

October 10, 2016

Variable thickness

high-Z diffuser

ToF 1

Upstream
spectrometer module

|

201 MHz
cavity

Secondary
lithium-hydride
absorber

Scintillating-fibre

tracker

CHEP 2016

Primary
lithium-hydride
absorber

Focus-coil
module

201 MHz
cavity

Downstream
spectrometer module

Secondary
lithium-hydride
absorber

il
|
]

module

Scintillating-fibre
tracker

7th February 2015

Electron
Muon
Ranger

Pre-shower
(KL)

ToF 2

MICE Software Goals

MICE is both an accelerator physics & a particle physics
experiment

— Beam simulations, emittances, transfer matrices, Twiss parameters

— Traditional HEP detectors: simulation, track reconstruction, particle identification
— Need common software scope

Online reconstruction & monitoring during data-taking
Wide range of geometries, configurations to book-keep
Framework for analysis tools

Code testing, Issue tracking, documentation

Long-term maintainability: MICE is built & operated in stages

October 10, 2016 CHEP 2016 4

DATA FLOW

REAL DATA MONTE CARLO
DAQ

Beam
Generation

Geant4

: _ Cabling, Calibrations,
Simulation

Geometry

Unpacking

Digitization

Reconstruction

Accelerator Physics Note that reconstruction is same

regardless of MC or real data

Online / Output

October 10, 2016 CHEP 2016 5

MAUS:

MICE ANALYSIS AND USER SOFTWARE
* Design inspired by MapReduce

Shuffle/Sort
* Map v O B
— Operate on a single ..
event
3

— Can run in parallel
— e.g. Simulate,

w Reduce H Output ‘

reconstruct Map :
Reduce g g Reduce H Output ‘
— Operate on a Map

collection of events : :
— e.g., Summary Map

histograms A

October 10, 2016 CHEP 2016

MAUS DESIGN

MAP: SPILL 1
| ALL SPILLS
: OUTPUT
i REDUCE:
MAP: SPILL N PLOT..

SIMULATE DIGITIZE RECON

October 10, 2016 CHEP 2016 7

MAUS: MICE ANALYSIS AND USER SOFTWARE

MapReduce

— Technically, in MAUS: Input-Transform-Merge-Output

INPUT: Read in data

— DAQ data file, I/O stream, beam library for Monte Carlo

MAP: Process spills & return modified data

— A spill is the primary data block & consists of several event triggers
— Monte Carlo simulation, Detector reconstructions

— Mappers have no internal state & can operate in parallel

REDUCE: Process accumulated data from all mapped spills
— Summary histograms, run performance plots, etc

OuUTPUT: Save data
— Write out in ROOT/JSON format

October 10, 2016 CHEP 2016 8

MAUS FRAMEWORK

Framework built on plug-in modules
Developers write modules in C++ or Python
— Python for higher-level algorithms, or where development time is a factor

— C++ for lower-level computationally intensive algorithms: particle tracking, fits,
likelihoods

— C++11 support

— Python-C++ bindings handled by wrappers

Data representation: ROOT, JSON

— Default is ROOT, but developers find JSON quite useful for quick debugging
— Mapper modules are templated to a data type

— conversion between data types handled by API

— Significant performance speedup by removing JSON-C++ conversions

October 10, 2016 CHEP 2016 9

CODE MANAGEMENT

10-15 developers in the UK, Europe, USA The worid A

— Headed by Adam Dobbs @ Imperial College /is;e:::‘;g:e,\
DIStrlbUted VerSIOH COﬂtrOl P / Build,;:itiaipon— \

— Bazaar repository, hosted on Launchpad / Commit to DCVS — Bazaar \
SCO”S bUIld SyStem / Agreed coding style + unit tests \

QA. / Architectural OO design using Design Patterns \
— Python/C++ style guidelines

— Unit testing & integration testing
— Code monitored for line & function coverage: aim > 70% line coverage

Redmine wiki & issue tracker
Scientific Linux 6 is officially supported OS

Several external dependencies

— Python, ROOT, Geant4, G4Beamline, XBoa ...
— Dependencies built as “third party” libaries during installation; build scripts come with MAUS

October 10, 2016 CHEP 2016 10

e Unit tests

— Test individual modules/pieces
of code

* Integration tests

— Test if units work together and
with external libraries

e Jenkins Cl test server with
multiple slaves at RAL and
Brunel University

— Developers run jobs on the test

servers, validate & test their

user branch before proposing to
merge in the mainline trunk

October 10, 2016 CHEP 2016 11

Database

Varying configurations & running conditions
— Beam momentum, cooling channel magnets, absorbers, calibrations
— Must be monitored (Controls & Monitoring — EPICS) & stored

Configuration DB holds

— Run conditions from data-taking

— Beamline settings

— Electronics cabling maps

— Calibration constants

— Geometry models

Postgres DB

Master DB within control-room LAN, public read-only slave at RAL

Most APls in Python, some in C (multi-threaded EPICS does not like Python)
See talk by J. Martyniak on Wednesday

October 10, 2016 CHEP 2016 12

MAUS Online

In classic MapReduce, map operations have to terminate before reduction

However, for online reconstruction:

— Want to visualize/plot (reduce) continuously as data flows (~after each map operation)

— Speed was also an issue with more computationally intensive modules coming into MAUS
New parallel C++ API developed:

— Interfaces with MAUS modules

— Jobs distributed by conveyer-like implementation
Allows either single or multi-threaded

— Multi-threaded mode during live data-taking

Thread Thread | | Thread Thread Thread
Input FIFO FIFO FIFO FIFO
Map Map Reduce Output

Map-|| Map

October 10, 2016 CHEP 2016 13

MAUS In Action

» Offline reprocessing & simulation with MAUS
performed on GRID

— Batch production & re-processing on Tier-2 sites
— MAUS installation for GRID via CVFMS at RAL

 During data-taking, "live” reconstruction happens
on a dedicated resource in the control room

— Reconstruction speed ~ data-taking rate

October 10, 2016 CHEP 2016 14

600

™

500

L = (zpy) — (ypa) <0

— Anticlockwise rotation, normal polarity

400

300
Polarity in the downstream tracker

200

Xpy i td station 1 Xy in td station 2 py in td station 3

100

l||||ll|IIIIII|IIII||III|IIII|III

o
=

N
o

L = (zpy) — (ypa) <0

— Anticlockwise rotation, normal polarity

October 10, 2016 CHEP 2016 15

» MAUS provides a simulation, reconstruction, and accelerator

SUMMARY

physics analysis framework for MICE
* Implemented based on MapReduce

e On
e We

 Several industry-standard QA practices adopted
— Code coverage, continuous integration testing

 Simulation and reconstruction software in place
» Data-taking underway & MAUS is in action feeding analysis

ine parallel processing capabilities
l-defined & vyet flexible framework

October 10, 2016 CHEP 2016

THANKS TO ALL MAUS DEVELOPERS

Online Reconstruction Tracker MC
Adam Dobbs / Chris Heidt
Tracker Tracker Kalman
Paul Kyberd Chris Hunt
TOF \ Tracker PR
Durga Rajaram []
Ckov
Cremaldi/Winter
KL

| | Mariyan Bogomilov

Offline Group Manager

Adam Dobbs — EMR

Francois Drielsma

Geometry Deputy

Geometry |__— Ryan Bayes

Stefania Ricciardi —

Beamline Geometry

Real Data John Nugent

Yordan Karadzhov

RF
[l

Global Tracking
| W Jan Greis

Global reconstruction

Melissa Uchida —————a Global PID

, And many more..
Celeste Pidcott
October 10, 2016 CHEP 2016 17

