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MUON IONIZATION COOLING EXPERIMENT

* Muon cooling: essential for future high-luminosity u -colliders & high-intensity v -factories

« U from & decays have large emittance & must be cooled (reduce phase space volume)

« Traditional beam cooling techniques too slow due to the short ¢ lifetime

* lonization Cooling is the only practical means:

* Reduce momentum by dE/dX in absorber, followed by RF reacceleration to restore p,

* Design, build & commission a realistic section of cooling channel to precisely measure emittance
reduction — Lessons => the design of a full cooling channel for a v Factory/ u Collider
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MICE Software Goals

MICE is both an accelerator physics & a particle physics
experiment

— Beam simulations, emittances, transfer matrices, Twiss parameters

— Traditional HEP detectors: simulation, track reconstruction, particle identification
— Need common software scope

Online reconstruction & monitoring during data-taking
Wide range of geometries, configurations to book-keep
Framework for analysis tools

Code testing, Issue tracking, documentation

Long-term maintainability: MICE is built & operated in stages
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DATA FLOW
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MAUS:

MICE ANALYSIS AND USER SOFTWARE
* Design inspired by MapReduce

Shuffle/Sort
* Map v O B
— Operate on a single ..
event
3

— Can run in parallel
— e.g. Simulate,

w Reduce H Output ‘

reconstruct Map :
Reduce g g Reduce H Output ‘
— Operate on a Map

collection of events : :
— e.g., Summary Map

histograms A
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MAUS DESIGN
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MAUS: MICE ANALYSIS AND USER SOFTWARE

MapReduce

— Technically, in MAUS: Input-Transform-Merge-Output

INPUT: Read in data

— DAQ data file, I/O stream, beam library for Monte Carlo

MAP: Process spills & return modified data

— A spill is the primary data block & consists of several event triggers
— Monte Carlo simulation, Detector reconstructions

— Mappers have no internal state & can operate in parallel

REDUCE: Process accumulated data from all mapped spills
— Summary histograms, run performance plots, etc

OuUTPUT: Save data
— Write out in ROOT/JSON format
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MAUS FRAMEWORK

Framework built on plug-in modules
Developers write modules in C++ or Python
— Python for higher-level algorithms, or where development time is a factor

— C++ for lower-level computationally intensive algorithms: particle tracking, fits,
likelihoods

— C++11 support

— Python-C++ bindings handled by wrappers

Data representation: ROOT, JSON

— Default is ROOT, but developers find JSON quite useful for quick debugging
— Mapper modules are templated to a data type

— conversion between data types handled by API

— Significant performance speedup by removing JSON-C++ conversions
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CODE MANAGEMENT

10-15 developers in the UK, Europe, USA The worid A

— Headed by Adam Dobbs @ Imperial College /is;e:::‘;g:e,\
DIStrlbUted VerSIOH COﬂtrOl P / Build,;:itiaipon— \

— Bazaar repository, hosted on Launchpad / Commit to DCVS — Bazaar \
SCO”S bUIld SyStem / Agreed coding style + unit tests \

QA. / Architectural OO design using Design Patterns \
— Python/C++ style guidelines

— Unit testing & integration testing
— Code monitored for line & function coverage: aim > 70% line coverage

Redmine wiki & issue tracker
Scientific Linux 6 is officially supported OS

Several external dependencies

— Python, ROOT, Geant4, G4Beamline, XBoa ...
— Dependencies built as “third party” libaries during installation; build scripts come with MAUS
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e Unit tests

— Test individual modules/pieces
of code

* Integration tests

— Test if units work together and
with external libraries

e Jenkins Cl test server with
multiple slaves at RAL and
Brunel University

— Developers run jobs on the test

servers, validate & test their

user branch before proposing to
merge in the mainline trunk
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Database

Varying configurations & running conditions
— Beam momentum, cooling channel magnets, absorbers, calibrations ....
— Must be monitored (Controls & Monitoring — EPICS) & stored

Configuration DB holds

— Run conditions from data-taking

— Beamline settings

— Electronics cabling maps

— Calibration constants

— Geometry models

Postgres DB

Master DB within control-room LAN, public read-only slave at RAL

Most APls in Python, some in C (multi-threaded EPICS does not like Python)
See talk by J. Martyniak on Wednesday
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MAUS Online

In classic MapReduce, map operations have to terminate before reduction

However, for online reconstruction:

— Want to visualize/plot (reduce) continuously as data flows (~after each map operation)

— Speed was also an issue with more computationally intensive modules coming into MAUS
New parallel C++ API developed:

— Interfaces with MAUS modules

— Jobs distributed by conveyer-like implementation
Allows either single or multi-threaded

— Multi-threaded mode during live data-taking

Thread Thread | | Thread Thread Thread
Input FIFO FIFO FIFO FIFO
Map Map Reduce Output

Map-|| Map
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MAUS In Action

» Offline reprocessing & simulation with MAUS
performed on GRID

— Batch production & re-processing on Tier-2 sites
— MAUS installation for GRID via CVFMS at RAL

 During data-taking, "live” reconstruction happens
on a dedicated resource in the control room

— Reconstruction speed ~ data-taking rate
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» MAUS provides a simulation, reconstruction, and accelerator

SUMMARY

physics analysis framework for MICE
* Implemented based on MapReduce

e On
e We

 Several industry-standard QA practices adopted
— Code coverage, continuous integration testing

 Simulation and reconstruction software in place
» Data-taking underway & MAUS is in action feeding analysis

ine parallel processing capabilities
l-defined & vyet flexible framework
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