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OUTLINE 

•  MICE 
•  Software Requirements 
•  Implementation 
– Design 
– Framework 
– Online 

•  Performance 
•  Conclusions 
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MUON IONIZATION COOLING EXPERIMENT 
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•  Muon cooling: essential for future high-luminosity μ-colliders & high-intensity ν-factories 
•  μ from π decays have large emittance & must be cooled (reduce phase space volume)  
•  Traditional beam cooling techniques too slow due to the short μ lifetime 
•  Ionization Cooling is the only practical means: 

•  Reduce momentum by dE/dX in absorber, followed by RF reacceleration to restore p|| 

•  Design, build & commission a realistic section of cooling channel to precisely measure emittance 
reduction – Lessons => the design of a full cooling channel for a ν Factory/μ Collider 
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MICE Software Goals 
•  MICE is both an accelerator physics & a particle physics 

experiment 
–  Beam simulations, emittances, transfer matrices, Twiss parameters 
–  Traditional HEP detectors: simulation, track reconstruction, particle identification 
–  Need common software scope 

•  Online reconstruction & monitoring during data-taking 
•  Wide range of geometries, configurations to book-keep 
•  Framework for analysis tools 
•  Code testing, Issue tracking, documentation 
•  Long-term maintainability: MICE is built & operated in stages 
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DATA FLOW 
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MAUS:  
MICE ANALYSIS AND USER SOFTWARE 

•  Design inspired by MapReduce 
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•  Map 
– Operate on a single 

event 
–  Can run in parallel 
–  e.g. Simulate, 

reconstruct 
•  Reduce 

– Operate on a 
collection of events 

–  e.g., Summary 
histograms 



MAUS DESIGN 
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•  MapReduce 
–  Technically, in MAUS: Input-Transform-Merge-Output 

•  INPUT:  Read in data 
– DAQ data file, I/O stream, beam library for Monte Carlo    

•  MAP: Process spills & return modified data 
–  A spill is the primary data block & consists of several event triggers  
– Monte Carlo simulation, Detector reconstructions 
– Mappers have no internal state & can operate in parallel  

•  REDUCE: Process accumulated data from all mapped spills 
–  Summary histograms, run performance plots, etc 

•  OUTPUT: Save data  
– Write out in ROOT/JSON format 
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MAUS: MICE ANALYSIS AND USER SOFTWARE 



MAUS FRAMEWORK 
•  Framework built on plug-in modules 
•  Developers write modules in C++ or Python 

–  Python for higher-level algorithms, or where development time is a factor 
–  C++ for lower-level computationally intensive algorithms: particle tracking, fits, 

likelihoods 
–  C++11 support 
–  Python-C++ bindings handled by wrappers 

•  Data representation: ROOT, JSON 
–  Default is ROOT, but developers find JSON quite useful for quick debugging 
–  Mapper modules are templated to a data type 
–  conversion between data types handled by API 
–  Significant performance speedup by removing JSON-C++ conversions 
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CODE MANAGEMENT 
•  10-15 developers in the UK, Europe, USA 

–  Headed by Adam Dobbs @ Imperial College 
•  Distributed version control 

–  Bazaar repository, hosted on Launchpad 
•  SCons build system 
•  QA: 

–  Python/C++ style guidelines 
–  Unit testing & integration testing 
–  Code monitored for line & function coverage: aim ≥ 70% line coverage 

•  Redmine wiki & issue tracker 
•  Scientific Linux 6 is officially supported OS 
•  Several external dependencies 

–  Python, ROOT, Geant4, G4Beamline, XBoa … 
–  Dependencies built as “third party” libaries during installation; build scripts come with MAUS    
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CONTINUOUS INTEGRATION 
•  Unit tests 

–  Test individual modules/pieces 
of code 

•  Integration tests 
–  Test if units work together and 

with external libraries 
•  Jenkins CI test server with 

multiple slaves at RAL and 
Brunel University 
–  Developers run jobs on the test 

servers, validate & test their 
user branch before proposing to 
merge in the mainline trunk 
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Database 
•  Varying configurations & running conditions 

–  Beam momentum, cooling channel magnets, absorbers, calibrations …. 
–  Must be monitored (Controls & Monitoring – EPICS) & stored   

•  Configuration DB holds 
–  Run conditions from data-taking 
–  Beamline settings 
–  Electronics cabling maps 
–  Calibration constants 
–  Geometry models 

•  Postgres DB 
•  Master DB within control-room LAN, public read-only slave at RAL 
•  Most APIs in Python, some in C (multi-threaded EPICS does not like Python) 
•  See talk by J. Martyniak on Wednesday 
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MAUS Online 
•  In classic MapReduce, map operations have to terminate before reduction 
•  However, for online reconstruction: 

–  Want to visualize/plot (reduce) continuously as data flows (~after each map operation) 
–  Speed was also an issue with more computationally intensive modules coming into MAUS 

•  New parallel C++ API developed: 
–  Interfaces with MAUS modules 
–  Jobs distributed by conveyer-like implementation 

•  Allows either single or multi-threaded 
–  Multi-threaded mode during live data-taking 
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Divide and conquer
Parallel computing: the large problem can be divided into smaller ones,
which are then solved at the same time.

How does this work

MAUS is used as a third party. All original MAUS maps and reducers
are used without changing anything.

The data processing is driven by a bunch of classes written c++11.

Conveyer-like implementation of the job distribution.

The code allows for a single-thread or a multi-thread processing.

Y. Karadzhov (UNIGE - DPNC) Online Reconstruction - CM44 March 30, 2016 3 / 11



MAUS In Action 

• Offline reprocessing & simulation with MAUS 
performed on GRID 
– Batch production & re-processing on Tier-2 sites 
– MAUS installation for GRID via CVFMS at RAL 

• During data-taking, ``live’’ reconstruction happens 
on a dedicated resource in the control room 
– Reconstruction speed ~ data-taking rate 
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RECONSTRUCTION PERFORMANCE 
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SUMMARY	
•  MAUS provides a simulation, reconstruction, and accelerator 

physics analysis framework for MICE 
•  Implemented based on MapReduce 
•  Online parallel processing capabilities 
•  Well-defined & yet flexible framework 
•  Several industry-standard QA practices adopted 

–  Code coverage, continuous integration testing 
•  Simulation and reconstruction software in place 
•  Data-taking underway & MAUS is in action feeding analysis  
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THANKS	TO	ALL	MAUS	DEVELOPERS	
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And	many	more..	


