FULL AND FAST SIMULATION FRAMEWORK FOR FUTURE CIRCULAR COLLIDER STUDIES

Anna Zaborowska

Warsaw University of Technology
CERN

CHEP 2016
October 11, 2016
Future Circular Collider

- 80-100 km circumference
- studied collider options:
 - hadron-hadron (FCC-hh)
 - lepton-lepton (FCC-ee)
 - hadron-lepton (FCC-he)
- goal 100 TeV for FCC-pp
 - more particles produced (×1.5 more than 14 TeV)
 - large detector (∼20 m x 50 m)
 - more pile-up events (∼1000 events)

http://fcc.web.cern.ch
Providing a flexible infrastructure

- different collider options
- several detector designs
- different accuracy, level of detail for
 - physics analyses
 - detector studies

What can be used?
- many specialised software solutions
- one flexible framework

SIMULATION

- event generation
- energy deposits
- hits
- digits
- reconstructed points
- raw data

RECONSTRUCTION

- particles
- tracks/clusters
- processing

Anna Zaborowska
Full and Fast Simulation Framework for FCC
October 11, 2016
Providing a flexible infrastructure

- different collider options
- several detector designs
- different accuracy, level of detail for
 - physics analyses
 - detector studies

What can be used?
- many specialised software solutions
- one flexible framework

\[\text{SIMULATION} \quad \text{RECONSTRUCTION}\]

- event generation
- energy deposits
- hits
- digits
- reconstructed points
- tracks/clusters
- particles
- raw data
- processing
Providing a flexible infrastructure

- different collider options
- several detector designs
- different accuracy, level of detail for
 - physics analyses
 - detector studies

What can be used?

many specialised software solutions
or
one flexible framework
Providing a flexible infrastructure

- different collider options
- several detector designs
- different accuracy, level of detail for
 - physics analyses
 - detector studies

What can be used?

many specialised software solutions

or

one flexible framework

FCCSW - software common for all FCC collider options (hh, ee, eh) and experiments.

- common toolkits for event generation, simulation, ...
- easy to mix fast and full simulation
Non-FCC specific part is extracted to Gaudi+Geant4 simulation framework: Gaussino
Full simulation configuration

SIMULATION

- Interface
- physics list
- user actions
- DD4hep geometry

Geant 4

EDM
• detectors
- detectors (and readout structure in sensitive detectors)
- detectors (and readout structure in sensitive detectors)

- step-by-step simulation
Full simulation

- detectors (and readout structure in sensitive detectors)
- step-by-step simulation
- sensitive detectors register particle passage
• detectors (and readout structure in sensitive detectors)

• step-by-step simulation

• sensitive detectors
 register particle passage

• saving energy deposits
Configuration of fast simulation:

- configuration of Geant 4
- add parametrisation process
- add models that govern the particle (its lifetime, properties, energy deposits).
Fast simulation

- regions
 - envelope of tracker
 - sensitive detectors for calorimeters
Fast simulation

• regions
 ◦ envelope of tracker
 ◦ sensitive detectors for calorimeters

• parametrisation
 ◦ triggered by chosen particles in chosen regions
 ◦ if conditions not fulfilled: detailed simulation
Fast simulation

• regions
 ◦ envelope of tracker
 ◦ sensitive detectors for calorimeters

• parametrisation
 ◦ triggered by chosen particles in chosen regions
 ◦ if conditions not fulfilled: detailed simulation

• at the entrance:
 ◦ ordinary transportation disabled
Fast simulation

- regions
 - envelope of tracker
 - sensitive detectors for calorimeters

- parametrisation
 - triggered by chosen particles in chosen regions
 - if conditions not fulfilled: detailed simulation

- at the entrance:
 - ordinary transportation disabled
 - tracker:
 - particle momentum changed (smeared)
 - new exit position
 - tracks stored
 - calorimeter:
 - hits created
 - energy deposits stored
Fast simulation

- regions
 - envelope of tracker
 - sensitive detectors for calorimeters

- parametrisation
 - triggered by chosen particles in chosen regions
 - if conditions not fulfilled: detailed simulation

- at the entrance:
 - ordinary transportation disabled
 - tracker:
 - particle momentum changed (smeared)
 - new exit position
 - tracks stored
 - calorimeter:
 - hits created
 - energy deposits stored

region: calorimeters
region: tracker
Tracking detectors

- full sim
- simulation
- digitisation
- reconstruction
- tracks
- particles

σ may depend on:
- momentum
- particle type
- pseudorapidity

σ may come from:
- tkLayout, (originally for tracker layout CMS Upgrade studies)
- FCC software, awaiting tracker reconstruction: ACTS

tkLayout
fcc-tklayout.web.cern.ch

ACTS
acts.web.cern.ch
smearing resolutions σ

 • may depend on:
 ○ momentum
 ○ particle type
 ○ pseudorapidity
Tracking detectors

- **full sim**
 - simulation
 - digitisation
 - reconstruction

- **particles**

- **fast sim**
 - smearing

- **tracks**

Smearing resolutions σ

- may depend on:
 - momentum
 - particle type
 - pseudorapidity

- may come from:
 - tkLayout, (originally for tracker layout CMS Upgrade studies)

tkLayout

fcc-tklayout.web.cern.ch
Tracking detectors

full sim

particles

fast sim

simulation

digitisation

reconstruction

smearing

smearing resolutions σ

- may depend on:
 - momentum
 - particle type
 - pseudorapidity

- may come from:
 - tkLayout, (originally for tracker layout CMS Upgrade studies)
 - FCC software, awaiting tracker reconstruction: ACTS

tkLayout

fcc-tklayout.web.cern.ch

ACTS

CHEP 2016, Track 2: 12 Oct 2016, 11:30
acts.web.cern.ch
Calorimeters

- full sim
- simulation
- particles
- digitisation
- reconstruction

a. GFlash library: existing in Geant 4
analytical parametrisation of shower profiles:
longitudinal (t) and radial (r, uniform in ϕ)
b. frozen showers: library of presimulated showers
a. GFlash library: existing in Geant 4

analytical parametrisation of shower profiles:
longitudinal (t) and radial (r, uniform in ϕ)

b. frozen showers: library of presimulated showers
Parametrisation of the electromagnetic showers, using the original GFlash parameters

First tests with FCC-hh size calorimeters and single electron events...

Automation of the extraction of the parameters from full simulation currently being implemented
Parametrisation of the electromagnetic showers, using the original GFlash parameters

First tests with FCC-hh size calorimeters and single electron events...

Automation of the extraction of the parameters from full simulation currently being implemented
Simulation in Geant 4

Currently

- possible to mix fast and full simulation within the same event
- event simulation entirely in hands of one framework
- first parametrisation models provided:
 - for tracking detectors:
 - p-dependent smearing
 - resolutions from external tools, e.g. tkLayout
 - for calorimeters:
 - GFlash parametrisation using original set of parameters

What next

- tools for extracting the parameters from full simulation
 - for existing models
 - within FCC software (same geometry)
- new parametrisation models:
 - for calorimeters:
 - frozen showers
Simulation in Geant 4

Currently

- possible to mix fast and full simulation within the same event
- event simulation entirely in hands of one framework
- first parametrisation models provided:
 - for tracking detectors:
 - p-dependent smearing
 - resolutions from external tools, e.g. tkLayout
 - for calorimeters:
 - GFlash parametrisation using original set of parameters

What next

- tools for extracting the parameters from full simulation
 - for existing models
 - within FCC software (same geometry)
- new parametrisation models:
 - for calorimeters:
 - frozen showers
• FCC software is designed to be shared between accelerator options and all experiments

• Simulation important for both detector design studies and physics analyses

http://fccsw.web.cern.ch/fccsw/
Summary

• FCC software is designed to be shared between accelerator options and all experiments

• Simulation important for both detector design studies and physics analyses

• Possibility to use in early studies Delphes ultra-fast parametrised simulation

http://fccsw.web.cern.ch/fccsw/
Summary

- FCC software is designed to be shared between accelerator options and all experiments
- Simulation important for both detector design studies and physics analyses
- Possibility to use in early studies Delphes ultra-fast parametrised simulation
- Integrated full and fast simulation within Geant 4

http://fccsw.web.cern.ch/fccsw/