

## **Validation of Electromagnetic Physics Models** for Parallel Computing Architectures in the GeantV project

(marilena.bandieramonte@cern.ch) for the GeantV team



### Marilena Bandieramonte



### 13<sup>th</sup> Oct 2016, San Francisco



### Overview

- GeantV project: the future generation simulation software\*
- Motivation and goals for the Vectorized Physics library (VecPhys)
  - Write EM physics models dealing with multiple tracks - accurate, fast and portable
  - Exploit both *SIMD* (vector pipeline) and *SIMT* (accelerators) execution models

### Statistical Verification suite for sampling for GeantV physics models

- Alternative sampling techniques:
  - Alias sampling method and improvements
  - Shuffling rejection method
  - Hybrid sampling techniques
- Investigate/try code improvements & alternative algorithm
- Measured performances on CPU/GPU\*\*
- Automation of the verification tools
- Final considerations and ongoing work

\*See Plenary Session 3 "Simulation - Key Issues for the Coming Decade" by Federico Carminati

\*\*See Oral "Computing Performance of GeantV Physics Models" by Soon Y. Jun!

## GeantV – Adapting simulation to modern hw

Classical simulation (G3, G4 and others) Flexible, but limited

adaptability towards the full potential of current & future hardware

\*See Plenary Session 3 "Simulation - Key Issues for the Coming Decade" by Federico Carminati

- One track at a time Stack approach
- Single event transport
- Embarrassingly parallel
- Cache coherency low
- Vectorization low (scalar autovectorization)



- Basket approach
- Multi event transport

**GeantV** simulation

Engineered to profit from

all processing pipelines

- Fine-grain parallelism + threads
- Cache coherency high
- Vectorization high (explicit multi-particle interfaces)

credit A. Gheata

## Motivation and goals

- 30-40% is on Electromagnetic (EM) processes
  - Write EM physics models dealing with multiple tracks
    - accurate
    - fast
    - portable
  - Exploit both *SIMD* (vector pipeline) and *SIMT* (accelerators) execution models
  - Have a *common source code*\* between scalar, vector and accelerator (GPU, Xeon Phi)
- Two approaches followed for the Physics:
  - Focus on vectorisation:
    - Explore alternative **sampling techniques**
    - Validate new vectorized physics models
  - Focus on physics models themselves
    - New Bremsstrahlung and Ionization models (both useful also for Geant4)

• 80% of CPU time is spent on electrons and photons in Geant4 for typical collider experiments. About



in the VecGeom Geometry Modeller" by Sandro C. Wenzel

\*See Oral "Accelerating Navigation

4

## Alias Sampling Method for N Discrete Outcomes

- 1/N = c (A. J. Walker, 1974) effectively vectorizable
- Reproduce the original distribution by one trial sampling:



Alias index: a[recipient] = donor Non-alias probability: q[i]

• Recast a N-discrete p.d.f to N equal probable events, each with likelihood

For any random  $(x_i)$ , accept if rand(0,1) < q[i] or take the alias

## Statistical Validation suite

1400

1200

1000

800

600

400

200

chi<sup>2</sup> test

residuals

- Pearson  $\chi^2$ -test for comparing weighted and unweighted histograms
- Analysis of residuals
- QQ-Plots





## EM physics processes under development

| Primary | Process               | Model               | Secondaries | Survivor |
|---------|-----------------------|---------------------|-------------|----------|
|         | Compton Scattering    | Klein-Nishina       | e⁻          | γ        |
| γ       | Pair-Production       | Bethe-Heitler       | e- e+       | _        |
|         | Photo-Electric Effect | Sauter-Gavrila      | e⁻          | _        |
|         | Ionization            | Moller-Bhabha       | e⁻          | e⁻       |
| e⁻      | Bremsstrahlung        | Seltzer-Berger      | Y           | e⁻       |
|         | Multiple Scattering   | Goudsmit-Saunderson | -           | e⁻       |





### SauterGavrila

## Klein-Nishina Validation Compton Scattering

Incident photon

 $E = hf_0 = p_0 c$   $\sum_{p_0 = h/\lambda_0} p_0 = h/\lambda_0$ 

Conservation of energy  $p_0c + mc^2 = pc + \sqrt{m^2c^4 + p_e^2c^2}$ Conservation of momentum  $p_0^2 + p^2 - 2p_0p\cos(\theta) = p_e^2$ 



### KleinNishina Pearson chi2Test: first results

|  | EnergyIn  | ValidationQ | Chi-2 test p-value |
|--|-----------|-------------|--------------------|
|  | 0.01 MeV  | EnergyOut1  | 0.650629           |
|  |           | EnergyOut2  | 0.664124           |
|  |           | AngleOut1   | 1.2814e-12         |
|  |           | AngleOut2   | 1.59571e-171       |
|  | 0.1 MeV   | EnergyOut1  | 0.342675           |
|  |           | EnergyOut2  | 0.209657           |
|  |           | AngleOut1   | 0.17035            |
|  |           | AngleOut2   | 1.75073e-68        |
|  | 1 MeV     | EnergyOut1  | 0.241563           |
|  |           | EnergyOut2  | 0.172393           |
|  |           | AngleOut1   | 0.379543           |
|  |           | AngleOut2   | 0.104473           |
|  | 10 MeV    | EnergyOut1  | 7.19275e-32        |
|  |           | EnergyOut2  | 7.90652e-21        |
|  |           | AngleOut1   | 0.720494           |
|  |           | AngleOut2   | 6.33771e-15        |
|  | 100 MeV   | EnergyOut1  | 0.522992           |
|  |           | EnergyOut2  | 0.0483391          |
|  |           | AngleOut1   | 0.0463506          |
|  |           | AngleOut2   | 0.0137113          |
|  | 1000 MeV  | EnergyOut1  | 5.03277e-06        |
|  |           | EnergyOut2  | 2.58997e-07        |
|  |           | AngleOut1   | 0                  |
|  |           | AngleOut2   | 0                  |
|  | 10000 MeV | EnergyOut1  | 5.20263e-308       |
|  |           | EnergyOut2  | 0                  |
|  |           | AngleOut1   | 0                  |
|  |           | AngleOut2   | 0                  |
|  |           |             |                    |
|  |           |             |                    |









|  | EnergyIn  | ValidationQ | Chi-2 test p-value |
|--|-----------|-------------|--------------------|
|  | 0.01 MeV  | EnergyOut1  | 0.31306            |
|  |           | EnergyOut2  | 0.795741           |
|  |           | AngleOut1   | 0.280804           |
|  |           | AngleOut2   | 0.141958           |
|  | 0.1 MeV   | EnergyOut1  | 0.857909           |
|  |           | EnergyOut2  | 0.858931           |
|  |           | AngleOut1   | 0.560302           |
|  |           | AngleOut2   | 1.5663e-15         |
|  | 1 MeV     | EnergyOut1  | 0.0103478          |
|  |           | EnergyOut2  | 0.0475544          |
|  |           | AngleOut1   | 0.0167979          |
|  |           | AngleOut2   | 5.14327e-56        |
|  | 10 MeV    | EnergyOut1  | 0.817173           |
|  |           | EnergyOut2  | 0.875291           |
|  |           | AngleOut1   | 0.872177           |
|  |           | AngleOut2   | 0.995689           |
|  | 100 MeV   | EnergyOut1  | 0.011512           |
|  |           | EnergyOut2  | 0.124762           |
|  |           | AngleOut1   | 0.0264691          |
|  |           | AngleOut2   | 0.387263           |
|  | 1000 MeV  | EnergyOut1  | 5.03277e-06        |
|  |           | EnergyOut2  | 2.58997e-07        |
|  |           | AngleOut1   | 0                  |
|  |           | AngleOut2   | 0                  |
|  | 10000 MeV | EnergyOut1  | 5.20263e-308       |
|  |           | EnergyOut2  | 0                  |
|  |           | AngleOut1   | 0                  |
|  |           | AngleOut2   | 0                  |
|  |           |             |                    |



### E\_in=0.01MeV





| EnergyIn | ValidationQ | Chi-2 test p-value |
|----------|-------------|--------------------|
| 0.01 MeV | EnergyOut1  | 0.131912           |
|          | EnergyOut2  | 0.492766           |
|          | AngleOut1   | 0.878847           |
|          | AngleOut2   | 0.590701           |
| 0.1 MeV  | EnergyOut1  | 0.07002            |
|          | EnergyOut2  | 0.0333841          |
|          | AngleOut1   | 0.120768           |
|          | AngleOut2   | 0.897628           |
| 1 MeV    | EnergyOut1  | 0.228669           |
|          | EnergyOut2  | 0.220132           |
|          | AngleOut1   | 0.0470413          |
|          | AngleOut2   | 4.68076e-46        |
| 10 MeV   | EnergyOut1  | 0.492207           |
|          | EnergyOut2  | 0.29053            |
|          | AngleOut1   | 0.289294           |
|          | AngleOut2   | 0.139839           |
| 100 MeV  | EnergyOut1  | 0.564205           |
|          | EnergyOut2  | 0.817869           |
|          | AngleOut1   | 0.357838           |
|          | AngleOut2   | 0.572742           |
| 1000 MeV | EnergyOut1  | 0.379965           |
|          | EnergyOut2  | 0.219433           |
|          | AngtoOut1   | 1.18777            |
|          | AngleOut2   | 1.52104e-193       |

In the case of Klein-Nishina at higher energies sampling a continuos variable discretising the pdf, bias the outcomes

### E\_in=1000 MeV



## Alternative sampling methods

### Limitation of the discrete alias sampling method ٠

- variable discretising the pdf).

### Alternative techniques using the composition and rejection

- Parallel (vector) + Sequential (scalar) loop over the vector width
- Shuffling (try and unpack, overhead for reorganising data)



• Hybrid (mixture of different methods in the parameter space)

• The alias method with a finite bin size is subject to have a biased outcomes if pdf is neither near constant not linear within a bin (sampling a continuos)

• *Improvement of* the Alias sampling (adaptive binning, transformation)

See talk "Computing Performance" of GeantV Physics Models" by Soon Y. Jun )!

### Hybrid KleinNishina Pearson chi2Test results

| EnergyIn   | ValidationQ | Chi-2 test p-value |
|------------|-------------|--------------------|
| 1 MeV      | EnergyOut1  | 0.580762           |
|            | EnergyOut2  | 0.187933           |
|            | AngleOut1   | 0.355483           |
|            | AngleOut2   | 0.823083           |
| 10 MeV     | EnergyOut1  | 0.00633212         |
|            | EnergyOut2  | 0.00199365         |
|            | AngleOut1   | 0.0351077          |
|            | AngleOut2   | 0.100245           |
| 100 MeV    | EnergyOut1  | 0.834322           |
|            | EnergyOut2  | 0.903547           |
|            | AngleOut1   | 0.795684           |
|            | AngleOut2   | 0.809488           |
| 250 MeV    | EnergyOut1  | 0.930848           |
|            | EnergyOut2  | 0.856883           |
|            | AngleOut1   | 0.0656924          |
|            | AngleOut2   | 0.721054           |
| 500 MeV    | EnergyOut1  | 0.937476           |
|            | EnergyOut2  | 0.841945           |
|            | AngleOut1   | 0.0737359          |
|            | AngleOut2   | 0.114897           |
| 1000 MeV   | EnergyOut1  | 0.523284           |
|            | EnergyOut2  | 0.777374           |
|            | AngleOut1   | 0.638076           |
|            | AngleOut2   | 0.656735           |
| 10000 MeV  | EnergyOut1  | 0.73755            |
|            | EnergyOut2  | 0.615561           |
|            | AngleOut1   | 0.247631           |
|            | AngleOut2   | 0.360034           |
| 100000 MeV | EnergyOut1  | 0.121317           |
|            | EnergyOut2  | 0.19909            |
|            | AngleOut1   | 0.881816           |
|            | AngleOut2   | 0.86112            |
|            |             |                    |



## Upcoming work and further developments

- sampling (adaptive binning, transformation)
- $\bullet$ middle of the bins)
- Validation against experimental data.

Integration of Compton VecPhys Process with the GeantV Scheduler

Investigation of *different sampling techniques* and *improvement of* the Alias

Extend validation for intermediate energies (around 100 MeV and in the



### Focus on alternative sampling techniques

•

- lacksquaresampled distributions are very steep
  - Found and fixed problems for Alias-Compton up to 100MeV  $\bullet$
  - MeV at the moment)
- implementation
- lacksquare
- *Tools automation* is advanced, easing future validations
- P-value Tables automatically generated
- Statistical analysis and graphs automatically generated ullet



The actual implementation of the Alias sampling introduces discretization errors, especially when the

Investigating the threshold energy (boundary between Alias and Shuffling sampling methods 100

### We have built a verification suite which can identify deficiencies of algorithms or errors in

robust test/verification suite which compares all the relevant physical quantities of output particles

# Questions?



(marilena.bandieramonte@cern.ch) for the GeantV team

### Marilena Bandieramonte

# Backup



### E\_in=0.01MeV





## Pearson $\chi^2$ -test for comparing weighted and unweighted histograms

- The hypotheses of identity is rejected if the p-value is lower than some significance level.
  - Traditionally significance levels 0.1, 0.05 and 0.01 are used.
  - rejected!
- overall #chi^{2} value.

 Comparison of two histograms expect hypotheses that two histograms represent identical distributions. To make a decision **p-value** should be calculated.

Chosen threshold 0.05 -> If p-value < 0.05 hypothesis of identity is</li>

 The comparison procedure should include an analysis of the residuals which is often helpful in identifying the bins of histograms responsible for a significant





Initial pdf (equal likelihood=1/4)



## Alias method



### 1/<sub>12</sub>

### Scaled probabilities so that a prob of 1/4would weight l

| 2 |                 |                 |                 |
|---|-----------------|-----------------|-----------------|
|   | 4/ <sub>3</sub> |                 |                 |
|   |                 | 1/ <sub>3</sub> | 1/ <sub>3</sub> |



## Alias method





### Algorithm: Alias Method

### Initialization:

- 1. Create arrays *Alias* and *Prob*, each of size *n*.
- 2. Create a balanced binary search tree T.
- 3. Insert  $n \cdot p_i$  into T for each probability *i*.
- 4. For j = 1 to n 1:

  - 3. Set  $Prob[l] = p_l$ .
  - 4. Set Alias[l] = g.
  - 5. Set  $p_g := p_g (1 p_l)$ .
  - 6. Add  $p_g$  to T.
- 6. Set Prob[i] = 1.
- Generation:

  - 3. If the coin comes up "heads," return i.
  - 4. Otherwise, return *Alias*[*i*].

1. Find and remove the smallest value in T; call it  $p_l$ . 2. Find and remove the largest value in T; call it  $p_g$ .

5. Let *i* be the last probability remaining, which must have weight 1.

```
1. Generate a fair die roll from an n-sided die; call the side i.
2. Flip a biased coin that comes up heads with probability Prob[i].
```

## Improvements of the algorithm - Vose's algorithm

This algorithm was originally described in the paper <u>"A Linear Algorithm For</u> <u>Generating Random Numbers With a Given Distribution</u>" by Michael Vose

The idea behind Vose's algorithm is to maintain two worklists, one containing the elements whose height is less than 1 and one containing the elements whose height is at least 1, and to repeatedly pair the first elements of each worklist.

On each iteration, we consume the element from the "small" worklist, and potentially move the remainder of the element from the "large" worklist into the "small" worklist.

The algorithm maintains several invariants:
The elements of the "small" worklist are all less than 1.
The elements of the "large" worklist are all at least 1.

| Algorithm           | Initialization Time<br>Best Worst | Generation Time<br>Best Worst | Memory Usage<br>Best Worst |
|---------------------|-----------------------------------|-------------------------------|----------------------------|
| Alias Method        | $O(n \log n)$                     | Θ(1)                          | $\Theta(n)$                |
| Vose's Alias Method | $\Theta(n)$                       | $\Theta(1)$                   | $\Theta(n)$                |

 $\neg \neg \neg \neg 4$ 

### Algorithm: (Unstable) Vose's Alias Method Initialization: 1. Create arrays Alias and Prob, each of size n. 2. Create two worklists, *Small* and *Large*. 3. Multiply each probability by n. 4. For each scaled probability $p_i$ : 1. If $p_i < 1$ , add *i* to *Small*. 2. Otherwise $(p_i \ge 1)$ , add *i* to *Large*. 5. While *Small* is not empty: 1. Remove the first element from *Small*; call it *l*. 2. Remove the first element from *Large*; call it g. 3. Set $Prob[l] = p_l$ . 4. Set Alias[l] = g. 5. Set $p_g := p_g - (1 - p_l)$ . 6. If $p_g < 1$ , add g to *Small*. 7. Otherwise $(p_g \ge 1)$ , add g to Large. 6. While *Large* is not empty: 1. Remove the first element from Large; call it g. 2. Set Prob[g] = 1. Generation: 1. Generate a fair die roll from an *n*-sided die; call the side *i*. 3. If the coin comes up "heads," return *i*.

4. Otherwise, return *Alias*[*i*].

Flip a biased coin that comes up heads with probability Prob[i].

## Is it a stable version?

Unfortunately, the above algorithm, as written, is not numerically stable. Two sources of inaccuracy:

- up in the Small list rather than in the Large one)
- significant rounding errors.

- The computation to determine whether or not a probability belongs to the Small or Large group may be inaccurate. Specifically, it may be possible that scaling up the probabilities by a factor of n may cause probabilities equal to 1/n to end up being slightly less than 1 (ending

- The computation that subtracts the appropriate probability mass from a larger probability is not numerically stable and may introduce

## A Vose's Alias method stable implementation

We will update the inner loop of the algorithm so that it terminates whenever either of the two worklists are empty, so we don't accidentally end up looking at nonexistent elements from the Large worklist.

Second, when one worklist is empty, we'll set the remaining probabilities of the elements in the other worklist to all be 1 since, mathematically, this should only occur if all of the remaining probabilites are precisely equal to 1.

Finally, we'll replace the computation that updates the large probabilities with a slightly more stable computation.

### Algorithm: Vose's Alias Method

### Initialization:

- 1. Create arrays *Alias* and *Prob*, each of size *n*.
- 2. Create two worklists, *Small* and *Large*.
- 3. Multiply each probability by *n*.
- 4. For each scaled probability  $p_i$ :
  - 1. If  $p_i < 1$ , add *i* to *Small*.
  - 2. Otherwise  $(p_i \ge 1)$ , add *i* to *Large*.
- - 3. Set  $Prob[l] = p_l$ .
  - 4. Set Alias[l] = g.

  - 6. If  $p_g < 1$ , add g to *Small*.
  - 7. Otherwise  $(p_g \ge 1)$ , add g to Large.
- 6. While *Large* is not empty:
  - 1. Remove the first element from *Large*; call it g.
  - 2. Set Prob[g] = 1.
- - 2. Set Prob[l] = 1.
- Generation:

  - 3. If the coin comes up "heads," return *i*.
  - 4. Otherwise, return Alias[i].

```
5. While Small and Large are not empty: (Large might be emptied first)
     1. Remove the first element from Small; call it l.
     2. Remove the first element from Large; call it g.
```

```
5. Set p_g := (p_g + p_l) - 1. (This is a more numerically stable option.)
```

7. While *Small* is not empty: *This is only possible due to numerical instability.* 1. Remove the first element from *Small*; call it *l*.

```
1. Generate a fair die roll from an n-sided die; call the side i.
2. Flip a biased coin that comes up heads with probability Prob[i].
```

- against each other.
- interval for the quantile.



### Q-Q plots

In statistics, a **Q-Q plot** ("Q" stands for *quantile*) is a probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles

Quantiles are cutpoints dividing a set of observations into equal sized groups.

A point (x, y) on the plot corresponds to one of the quantiles of the second distribution (y-coordinate) plotted against the same quantile of the first distribution (x-coordinate). Thus the line is a **parametric curve** with the parameter which is the (number of the)

- ulletapproximately lie on the line y = x.
- $\bullet$ on a line, but not necessarily on the line y = x.
- $\bullet$ two distributions.



### Q-Q plots

If the two distributions being compared are **similar**, the points in the Q–Q plot will

If the distributions are **linearly related**, the points in the Q–Q plot will approximately lie

A Q–Q plot is used to compare the shapes of distributions, providing a graphical view of how properties such as location, scale, and skewness are similar or different in the



A Q–Q plot comparing the distributions of standardised daily maximum temperatures at 25 stations in the US state of Ohio in March and in July. The data cover the period 1893–2001.



### Normal Probability Plot

ulletdata, residuals from model fits, and estimated parameters.



The **normal probability plot** is a graphical technique to identify substantive departures from normality. This includes identifying outliers, skewness, kurtosis, a need for transformations, and mixtures. Normal probability plots are made of raw



### Normal Probability Plot

The points follow a strongly nonlinear pattern, suggesting that the data are not distributed as a standard normal (X ~ n(0,1))



The offset between the line and the points suggests that the mean of the data is not 0. The median of the points can be determined to be near 0.7



### Pearson, A-D and K-S p-values



38

### $\chi^2$ -test for comparing weighted and unweighted histograms

- Most convenient for analysis are the normalized residuals.
- independent and identically distributed random variables having N(0,1) distribution.

### **References:**

http://arxiv.org/pdf/0905.4221v3.pdf http://arxiv.org/pdf/1309.4649.pdf https://indico.cern.ch/event/217511/contribution/35/attachments/349287/486926/compar.pdf http://cds.cern.ch/record/1116584/files/ACAT-060.pdf?version%3D1?In=bg http://arxiv.org/pdf/physics/0605123v1.pdf https://root.cern.ch/root/html/tutorials/math/chi2test.C.html

• **Residuals** are the difference between bin contents and expected bin contents.

• If the hypothesis of identity is valid then **normalized residuals** are approximately

 Analysis of residuals expect test of above mentioned properties of residuals. Notice that indirectly the analysis of residuals increase the power of  $\#chi^{2}$  test.