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Overview

• GeantV project: the future generation simulation software*

• Motivation and goals for the Vectorized Physics library (VecPhys)

• Write EM physics models dealing with multiple tracks  
-  accurate, fast and portable 

• Exploit both SIMD (vector pipeline) and SIMT (accelerators) execution models 

• Statistical Verification suite for sampling for GeantV physics models

• Alternative sampling techniques: 

• Alias sampling method and improvements 

• Shuffling rejection method 

• Hybrid sampling techniques 

• Investigate/try code improvements & alternative algorithm 

• Measured performances on CPU/GPU** 

• Automation of the verification tools  

• Final considerations and ongoing work

**See Oral "Computing 
Performance of GeantV Physics 

Models" by Soon Y. Jun!

*See Plenary Session 3  "Simulation 
- Key Issues for the Coming 

Decade” by Federico Carminati
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GeantV – Adapting simulation to modern hw

Classical simulation (G3, 
G4 and others) 
Flexible, but limited 
adaptability towards the full 
potential of current & future 
hardware

GeantV simulation 
Engineered to profit from 
all processing pipelines

• One track at a time - Stack approach 
• Single event transport 
• Embarrassingly parallel 
• Cache coherency – low 
• Vectorization – low (scalar auto-

vectorization)

• Basket approach 
• Multi event transport 
• Fine-grain parallelism + threads 
• Cache coherency – high 
• Vectorization – high (explicit multi-particle 

interfaces) credit A. Gheata
3

*See Plenary Session 3  
"Simulation - Key Issues 

for the Coming 
Decade” by Federico 

Carminati



Motivation and goals  
• 80% of CPU time is spent on electrons and photons in Geant4 for typical collider experiments.  About 

30-40% is on Electromagnetic (EM)  processes 

• Write EM physics models dealing with multiple tracks 
-  accurate 
-  fast  
-  portable 

• Exploit both SIMD (vector pipeline) and SIMT  (accelerators)  
execution models 

• Have a common source code* between scalar,  
vector and accelerator (GPU, Xeon Phi) 

• Two approaches followed for the Physics: 

• Focus on vectorisation: 

• Explore alternative sampling techniques 

• Validate new vectorized physics models  

• Focus on physics models themselves 

• New Bremsstrahlung and Ionization models (both useful also for  
Geant4)

*See Oral "Accelerating Navigation 
in the VecGeom Geometry 

Modeller” by Sandro C. Wenzel
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• Recast a N-discrete p.d.f to N equal probable events, each with likelihood  
1/N = c (A. J. Walker, 1974) – effectively vectorizable 

• Reproduce the original distribution by one trial sampling:

Alias Sampling Method for N Discrete 
Outcomes 

Alias index: a[recipient] = donor  
Non-alias probability: q[i]
For any random (xi), accept if rand(0,1) < q[i] or take the alias

credit S. Y. Jun
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Statistical Validation suite
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- Pearson χ2-test for comparing 
weighted and unweighted 
histograms 

- Analysis of residuals 

- QQ-Plots



Primary Process Model Secondaries Survivor

γ

Compton Scattering Klein-Nishina e- γ

Pair-Production Bethe-Heitler e-  e+ -

Photo-Electric Effect Sauter-Gavrila e- -

e-

Ionization Moller-Bhabha e- e-

Bremsstrahlung Seltzer-Berger γ e-

Multiple Scattering Goudsmit-Saunderson - e-

EM physics processes under development
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Photo-electric effect*

Pair production***

Compton**

SauterGavrila

KleinNishina

Bethe-Heitler

* Photo-electric should not be validated with Geant4 in the energy range, (E/m_electron) < 50 ~ 25 MeV
(above this threshold, Geant4 returns cos(theta) =1 as a good approximation)
** Compton should be validated for E > 10KeV (to be consistent with Geant4)
*** Pair production: should be validated in the energy range,  E > 2*m_electron ~ 1 MeV

Gamma processes
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Klein-Nishina Validation
Compton Scattering
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EnergyIn ValidationQ Chi-2 test p-value A-D test p-value K-S test p-value
0.01 MeV EnergyOut1 0.650629 1 1

EnergyOut2 0.664124 1 1
AngleOut1 1.2814e-12 0.999999 0.999998
AngleOut2 1.59571e-171 1 1

0.1 MeV EnergyOut1 0.342675 1 1
EnergyOut2 0.209657 1 1
AngleOut1 0.17035 0.997342 0.999633
AngleOut2 1.75073e-68 0.999999 0.999998

1 MeV EnergyOut1 0.241563 0.999999 0.999633
EnergyOut2 0.172393 0.999989 0.993765
AngleOut1 0.379543 0.986458 0.906206
AngleOut2 0.104473 1 0.999633

10 MeV EnergyOut1 7.19275e-32 0.98934 0.906206
EnergyOut2 7.90652e-21 0.998548 0.993765
AngleOut1 0.720494 0.999999 0.999998
AngleOut2 6.33771e-15 1 0.999998

100 MeV EnergyOut1 0.522992 0.999778 0.993765
EnergyOut2 0.0483391 1 0.999633
AngleOut1 0.0463506 0.999999 0.999633
AngleOut2 0.0137113 0.999992 0.906206

1000 MeV EnergyOut1 5.03277e-06 0.940721 0.699374
EnergyOut2 2.58997e-07 0.93819 0.906206
AngleOut1 0 0.157212 0.28093
AngleOut2 0 0.569165 0.0783231

10000 MeV EnergyOut1 5.20263e-308 0.00121127 7.14257e-05
EnergyOut2 0 0.00050695 1.90803e-05
AngleOut1 0 0.000419885 1.90803e-05
AngleOut2 0 0.0139016 1.90803e-05

P-value Table

Old Master
KleinNishina Pearson chi2Test: first results
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EnergyIn ValidationQ Chi-2 test p-value A-D test p-value K-S test p-value
0.01 MeV EnergyOut1 0.31306 1 1

EnergyOut2 0.795741 1 1
AngleOut1 0.280804 0.999835 0.999998
AngleOut2 0.141958 0.999999 0.999998

0.1 MeV EnergyOut1 0.857909 1 1
EnergyOut2 0.858931 1 1
AngleOut1 0.560302 1 1
AngleOut2 1.5663e-15 0.999554 0.967068

1 MeV EnergyOut1 0.0103478 0.997621 0.906206
EnergyOut2 0.0475544 0.999389 0.967068
AngleOut1 0.0167979 0.997876 0.993765
AngleOut2 5.14327e-56 0.999348 0.999633

10 MeV EnergyOut1 0.817173 1 0.999633
EnergyOut2 0.875291 0.999997 0.993765
AngleOut1 0.872177 0.999999 0.999998
AngleOut2 0.995689 1 0.999998

100 MeV EnergyOut1 0.011512 0.876119 0.467558
EnergyOut2 0.124762 0.981562 0.699374
AngleOut1 0.0264691 0.999996 0.999633
AngleOut2 0.387263 1 1

1000 MeV EnergyOut1 5.03277e-06 0.940721 0.699374
EnergyOut2 2.58997e-07 0.93819 0.906206
AngleOut1 0 0.157212 0.28093
AngleOut2 0 0.569165 0.0783231

10000 MeV EnergyOut1 5.20263e-308 0.00121127 7.14257e-05
EnergyOut2 0 0.00050695 1.90803e-05
AngleOut1 0 0.000419885 1.90803e-05
AngleOut2 0 0.0139016 1.90803e-05

P-value Table
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15

In the case of Klein-Nishina at higher 
energies sampling a continuos 

variable discretising the pdf, bias the 
outcomes



E_in=1000 MeV
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• Limitation of the discrete alias sampling method
• The alias method with a finite bin size is subject to have a biased outcomes if 

pdf is neither near constant not linear within a bin (sampling a continuos 
variable discretising the pdf). 
• Improvement of the Alias sampling (adaptive binning, transformation) 

• Alternative techniques using the composition and rejection
• Parallel (vector) + Sequential (scalar) loop over the vector width 
• Shuffling (try and unpack, overhead for reorganising data) 

• Hybrid (mixture of different methods in the parameter space)

Alternative sampling methods

See talk "Computing Performance 
of GeantV Physics Models" by 

Soon Y. Jun )!
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Hybrid KleinNishina Pearson chi2Test results

18



Upcoming work and further developments

• Integration of Compton VecPhys Process with the GeantV Scheduler 

• Investigation of different sampling techniques and improvement of the Alias 
sampling (adaptive binning, transformation) 

• Extend validation for intermediate energies (around 100 MeV and in the 
middle of the bins) 

• Validation against experimental data.
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Summary
• Focus on alternative sampling techniques

• The actual implementation of the Alias sampling introduces discretization errors, especially when the 
sampled distributions are very steep 

• Found and fixed problems for Alias-Compton up to 100MeV 

• Investigating the threshold energy (boundary between Alias and Shuffling sampling methods 100 
MeV at the moment) 

• We have built a verification suite which can identify deficiencies of algorithms or errors in 
implementation

• robust test/verification suite which compares all the relevant physical quantities of output particles 

• Tools automation is advanced, easing future validations

• P-value Tables automatically generated 

• Statistical analysis and graphs automatically generated
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Questions?

Marilena Bandieramonte 
(marilena.bandieramonte@cern.ch)  

for the GeantV team

21



Backup
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• Comparison of two histograms expect hypotheses that two histograms represent 
identical distributions. To make a decision p-value should be calculated.  

• The hypotheses of identity is rejected if the p-value is lower than some 
significance level.  

• Traditionally significance levels 0.1, 0.05 and 0.01 are used.  
• Chosen threshold 0.05 -> If p-value < 0.05 hypothesis of identity is 

rejected!

• The comparison procedure should include an analysis of the residuals which is 
often helpful in identifying the bins of histograms responsible for a significant 
overall #chi^{2} value. 

Pearson χ2-test for comparing weighted and  
unweighted histograms
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Alias method 

Initial pdf (equal likelihood=1/4) Scaled probabilities so that a  prob of 1/4 
would weight 1 
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Alias method 
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Improvements of the algorithm - Vose’s algorithm

This algorithm was originally described in the paper "A Linear Algorithm For 
Generating Random Numbers With a Given Distribution" by Michael Vose 

The idea behind Vose's algorithm is to maintain two worklists, one containing the 
elements whose height is less than 1 and one containing the elements whose height 
is at least 1, and to repeatedly pair the first elements of each worklist.  

On each iteration, we consume the element from the "small" worklist, and potentially 
move the remainder of the element from the "large" worklist into the "small" worklist. 

The algorithm maintains several invariants: 
- The elements of the "small" worklist are all less than 1. 
- The elements of the "large" worklist are all at least 1. 

Ref: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9291728

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=92917
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Unfortunately, the above algorithm, as written, is not numerically stable.  
Two sources of inaccuracy: 

- The computation to determine whether or not a probability belongs to 
the Small or Large group may be inaccurate. Specifically, it may be 
possible that scaling up the probabilities by a factor of n may cause 
probabilities equal to 1/n to end up being slightly less than 1 (ending 
up in the Small list rather than in the Large one) 

- The computation that subtracts the appropriate probability mass 
from a larger probability is not numerically stable and may introduce 
significant rounding errors. 

Is it a stable version?
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We will update the inner loop of the algorithm so that it terminates whenever either 
of the two worklists are empty, so we don't accidentally end up looking at 
nonexistent elements from the Large worklist.  

Second, when one worklist is empty, we'll set the remaining probabilities of the 
elements in the other worklist to all be 1 since, mathematically, this should only 
occur if all of the remaining probabilites are precisely equal to 1.  

Finally, we'll replace the computation that updates the large probabilities with a 
slightly more stable computation.

A Vose’s Alias method stable implementation
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• In statistics, a Q–Q plot ("Q" stands for quantile) is a probability plot, which is a 
graphical method for comparing two probability distributions by plotting their quantiles 
against each other. 

• Quantiles are cutpoints dividing a set of observations into equal sized groups. 

• A point (x, y) on the plot corresponds to one of the quantiles of the second distribution 
(y-coordinate) plotted against the same quantile of the first distribution (x-coordinate). 
Thus the line is a parametric curve with the parameter which is the (number of the) 
interval for the quantile.

Q-Q plots
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• If the two distributions being compared are similar, the points in the Q–Q plot will 
approximately lie on the line y = x.  

• If the distributions are linearly related, the points in the Q–Q plot will approximately lie 
on a line, but not necessarily on the line y = x. 

• A Q–Q plot is used to compare the shapes of distributions, providing a graphical view 
of how properties such as location, scale, and skewness are similar or different in the 
two distributions.

Q-Q plots
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 A Q–Q plot comparing the distributions of standardised daily maximum temperatures at 25 stations in the US state of Ohio in March 
and in July. The data cover the period 1893–2001.

 the central quantiles are more 
closely spaced in July than in 

Narch

July distribution is 
skewed to the left 
compared to the 

Narch distribution

Daily 
maximum 

Q-Q plots
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• The normal probability plot is a graphical technique to identify substantive 
departures from normality. This includes identifying outliers, skewness, kurtosis, a 
need for transformations, and mixtures. Normal probability plots are made of raw 
data, residuals from model fits, and estimated parameters.

Normal Probability Plot
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A normal Q–Q plot of randomly generated, independent standard exponential data, (X ~ 
Exp(1)). This Q–Q plot compares a sample of data on the vertical axis to a statistical 

population on the horizontal axis. 

The points follow a 
strongly nonlinear 
pattern, suggesting 
that the data are 
not distributed as 
a standard normal 

(X ~ N(0,1))

The offset between the line 
and the points suggests 

that the mean of the data 
is not 0. The median of the 

points can be determined to 
be near 0.7

Normal Probability Plot
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• Residuals are the difference between bin contents and expected bin contents. 
Most convenient for analysis are the normalized residuals.  

• If the hypothesis of identity is valid then normalized residuals are approximately 
independent and identically distributed random variables having N(0,1) 
distribution. 

• Analysis of residuals expect test of above mentioned properties of residuals. 
Notice that indirectly the analysis of residuals increase the power of #chi^{2} test. 
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χ2-test for comparing weighted and  
unweighted histograms
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