Highlights

- **Goal:** write Electromagnetic physics models for modern parallel computing architectures dealing with multiple tracks, accurate, fast and "portable":
 - maximum throughput for given resources
 - exploit both SIMD (vector pipeline) and SIMT (accelerators) execution models
 - common source code between scalar, vector and accelerator (GPU, Xeon Phi)
- How: Explore alternative sampling techniques (avoid conditional branch, do-while) effectively vectorizable
 - Alias sampling technique
 - Shuffling method
- Instruments: Statistical Validation of vectorized physics models:
 - X² Pearson-test, Kolmogorov-Smirnov test, Anderson-Darling test
 - Normal Probability Plots and Q-Q Plots
- Results: Compton scattering Klein-Nishina model ongoing validation results and further developments