Reconstruction Software of the Silicon Tracker of DAMPE

Andrii Tykhonov

University of Geneva

Outline

- Introduction: DAMPE mission
- Track reconstruction software: combined-2D vs 3D
- Implementation of detector geometry: CAD-2-GDML
- Alignment of tracker: method of varying- x^{2}

DAMPE mission

$$
\begin{gathered}
\text { DAMPE is designed to detect } \\
5 \mathrm{GeV} \text { to } 10 \mathrm{TeV} \text { e/ } \gamma \\
50 \mathrm{GeV}-100 \mathrm{TeV} \text { protons and nuclei } \\
\text { with excellent energy resolution, tracking precision and particle } \\
\text { identification capabilities } \\
\hline
\end{gathered}
$$

Silicon tracker
$6.6 \mathrm{~m}^{2}$ of silicon sensors

Neutron Detector
32 radiation lengths

DAMPE successfully launched on December 17, 2015

DAMPE \rightarrow WUKONG

Jiuquan Satellite Launch Center Gobi desert, China

Particle track reconstruction in DAMPE

Steps of the track reconstruction

- Seeding
- Propagation (Kalman filter)
- Removal of ghost and duplicates

330 GeV Electron candidate

Particle track reconstruction in DAMPE

- Track seeds:

1. Direction from calorimeter (Calorimeter-seed) - baseline
2. Blind seeds (on-ground tests only)

- Calorimeter seed:
- x and y track candidates are reconstructed separately (Kalman filter)
- Combined $x y$ tracks are refitted again with Kalman algorithm

DAMPE YZ E=9.631 GeV

Particle track reconstruction in DAMPE

- Iterative track reconstruction:
- If a good track is found - first hit in is removed from "seeding points"
- Track-finding repeated until all seeding points are exhausted
- Reconstructing tracks in $X Z$ and $Y Z$ is $\mathbf{O (1 0 0)}$ faster than 3D reconstruction
- Allows to remove per-event limit of maximum number of iterations

10 \% higher efficiency in finding the best possible track in event

DAMPE geometry implementation: CAD-2-GDML

- GEANT4 geometry model of DAMPE is obtained as GDML from CAD drawings using an in-house conversion tool:
https://github.com/tihonav/cad-to-geant4-converter
- The same GDML geometry is used in the reconstruction
- Supporting structures are included

CAD-2-GDML converter

https://qithub.com/tihonav/cad-to-geant4-converter

- A standalone python tool
- Does not require GEANT4 or any other additional software
- Based on conversion of CAD into meshed (tessellated) objects
- Base set of materials implemented, should be easy to extend further

... possible application for ATLAS IBL is now being investigated, in particular could aid simulations used for B-tagging

CAD-2-GDML: performance tests

DAMPE GDML geometry:

- ~ 50 MB total
- ~ 150k vertices

	Tessellated [s/event]	Simple Geometry [s/event]	Factor
Protons:			
$1-10$	GeV	0.47	0.085
$10-100$	GeV	2.6	0.61
$10-1000 \mathrm{GeV}$	24.9	4.8	$\mathbf{5 . 5}$
			$\mathbf{5 . 2}$
Electrons:		0.14	
$1-10$	GeV	1.21	1.16
$10-100 \mathrm{GeV}$	8.9	$\mathbf{8 . 7}$	
$10-1000 \mathrm{GeV}$	88.9		$\mathbf{7 . 7}$
			$\mathbf{6 . 7}$

Tessellated geometry - baseline, includes supporting structures

For comparison, simple geometry was used only sensitive volumes (defined as simple boxes)

Silicon Tracker of DAMPE

Tracker:

- 6 tracking double layers (x and y measurement)
- 768 total silicon sensors (SSD), $9.5 \times 9.5 \mathrm{~cm}$
- $121 \mu \mathrm{~m}$ silicon-strip pitch
- Every 2nd strip is read-out
- Total active area ~ $6.6 \mathrm{~m}^{2}$
- Excepted position resolution: ~40 micron

particle track

Alignment of DAMPE Silicon Tracker

Track-hit residue VS track
coordinate for one of the STK layers:

Position resolution of silicon sensors ~ $40 \mu \mathrm{~m}$

Assembly precision ~ $100 \mu \mathrm{~m}$
Precise alignment is crucial in order to fully exploit angular resolution of the instrument

Alignment of DAMPE Silicon Tracker: method

- 5 (2 offsets, 3 rotations) alignment parameters assigned to each silicon sensor $=768$ * $5=\underline{3840}$ alignment parameters

Alignment of DAMPE Silicon Tracker: method

Alignment is based on minimisation of x^{2} of tracks in the alignment data sample:

$$
\begin{gathered}
\chi^{2}=\sum_{t \in\{\text { tracks }\}}\left(\sum_{p \in\{p o i n t s\}} \frac{\left(x_{t, p}^{f i t}-x_{t, p}^{h i t}\right)^{2}}{N_{x t r a c k s, s}}+\sum_{p \in\{p o i n t s\}} \frac{\left(y_{t, p}^{f i t}-y_{t, p}^{\text {hit }}\right)^{2}}{N_{y \text { tracks }, s}}\right), \\
s=\operatorname{sensor} \mid \mathrm{id}(t, p)
\end{gathered}
$$

Alignment of DAMPE Silicon Tracker: method

- X^{2} is affected by the noise (mis-reconstructed track hits, multiple scattering) - imposes limitations on precision of alignment
- To reduce noise contribution to X^{2}, at each iteration of algorithm, we use only those tracks that pass residue cuts for the hits - this implies that χ^{2} evaluation sample changes from one iteration to another

Alignment of DAMPE Silicon Tracker: method

- Optimisation of X^{2} is not a merely minimisation any more (in some iteration x^{2} can also increase)
- Instead, optimisation is performed by moving in a phase space of alignment parameters in the direction opposite to derivatives vector, until the modulus of this vector become small enough

Alignment of DAMPE Silicon Tracker: results

The method of varying- x^{2} improves quality of alignment and as a result - position resolution

Alignment of DAMPE Silicon Tracker: results

Good agreement is achieved between position resolution in the aligned and ideal (Simulation) model

Summary \& Conclusions

- DAMPE is powerful high-energy particle detector satellite mission, successfully launched in the end of 2015
- Tracking detector consist of about $6.6 \mathrm{~m}^{2}$ of silicon-strip sensors.
- Track finding is done separately in XZ and YZ with Kalman filter, then tracks are combined in 3D and Kalman-refitted again.
- Geometry of the detector is implemented through CAD-2-GDML converter; the same geometry is used in both simulation and reconstruction.
- Alignment of tracker is done using the technique which employs varying X^{2} sample, outperforming the standard minimisation of X^{2}.

Thank you!

email: andrii.tykhonov@cern.ch

Spare slides

Alignment as a function of

time

Date

Change of position resolution (fixed alignment)

Change of position resolution (realigned)

Alignment as a function of

time

Date

Comparison with AMS-02 and FERMI

	DAMPE	AMS-02	Fermi LAT
e/ $/$ Energy res.@100 GeV (\%)	1.5	3	10
e / γ Angular res.@100 GeV (${ }^{\circ}$)	0.1	0.3	0.1
e/p discrimination	10^{5}	$10^{5}-10^{6}$	10^{3}
Calorimeter thickness $\left(\mathrm{X}_{0}\right)$	32	17	8.6
Geometrical accep. $\left(\mathrm{m}^{2} \mathrm{sr}\right)$	$\mathbf{0 . 2 9}$	0.09	1

Livetime: > 3 years

The DAMPE satellite

PSD: double layer of scintillating strip detector acting as anti-coincidence unit

STK: 6 tracking double layers of Silicon-Strip Detectors (SSD) + 3 mm tungsten plates (used for photon conversion)

BGO: the calorimeter made of 308 Bismuth-Germanium-Oxide bars in hodoscopic arrangement (~ 32 radiation length). Performs both energy measurements and trigger

NUD: boron-doped plastic scintillator complementary to the BGO by measuring the thermal neutron shower activity

The Physics Goals of the DAMPE mission

- Study of the cosmic electron and photon spectra
- Study of cosmic ray protons and nuclei: spectrum and composition
- High-energy gamma ray astronomy: AGN, Pulsars, GRBs, ...
- Search for dark matter signatures in electron spectra

