ATLAS Data Preparation in Run 2

Paul Laycock
for the ATLAS collaboration

ATLAS Online Luminosity

\[\sqrt{s} = 13 \text{ TeV} \]

- LHC Delivered
- ATLAS Recorded

Total Delivered: 29.3 fb\(^{-1}\)
Total Recorded: 27.1 fb\(^{-1}\)
The Atlas Detector

Inner Tracker (|\(\eta\)|<2.5, B=2T):
Precise tracking and vertexing, \(e/\pi\) separation, momentum resolution:
\(\sigma/p_T \sim 0.04\% \ p_T\ (GeV) \oplus 1.5\%\)

EM calorimeter:
Pb-LAr Accordion, \(e/\gamma\) trigger, id. and meas.,
energy res.: \(\sigma/E \sim 10\%/\sqrt{E} \oplus 0.7\%\)

HAD calorimetry (|\(\eta\)|<5): Fe/scintillator Tiles (cen), Cu/W-LAr (fwd).
trigger and meas. of jets and \(E_T,miss\), energy res.: \(\sigma/E \sim 50\%/\sqrt{E} \oplus 3\%\)

Trigger system: 3-levels reducing the IA rate from 40 MHz to ~200 Hz

Muon Spectrometer: air-core toroids with gas-based muon chambers.
trigger and meas. with momentum resolution < 10\% up to \(E_\mu \sim 1\) TeV

L ~ 46 m, \(\phi \sim 22\) m, 7000 tons ~10^8 electronic channels

Millions of detector readout channels read out to reconstruct one event

Dr Paul Laycock
The Atlas Trigger and DAQ

Event rates
- 40 MHz
- 100 kHz
- ~ 1000 Hz

Trigger
- Level 1
 - Custom Hardware
 - RoIB
- HLT
 - ~ 30k Processing Unit

DAQ
- Calo/Muon
- Pixel/SCT
- Other
- FE
- ROD
- O(10)
- Data Logger
- O(100)
- FTK
- Readout System

Data flow
- ~ 160 GB/s
- ~ 25 GB/s
- ~ 1500 MB/s

Data rates
- ATLAS Event 1.7(?)MB/25 ns

Event rates
- ~ 1000 Hz

Detected readout

CERN
Permanent Storage

Dr Paul Laycock
Streams and outputs

Bandwidth dominated by the main physics stream @ 1 kHz

14 full event physics streams

20 partial event calibration and debug streams, rates from <1Hz to >10 kHz

Mostly processed using centrally managed software configurations

Providing a variety of data formats tailored for each use case
What is Data Preparation?

Data Preparation
- Data Quality Assessment
- Calibration
- Primary Reconstruction

Good Run List

Dr Paul Laycock
Run 2 Challenges

Despite improvements in hardware, software and workflows, we had backlogs at the Tier-0.

- Pileup: Averaged over all fills, pileup is similar to 2012 (broad distribution with mean ~20)
- Peak pileup increasing towards end of year and expected to be able to reach 50 next year

LHC uptime reached ~80%

Tier-0 Backlog: 1st June - 31st July

mid-year availability, physics production only (no commissioning, MD, ...)
Dedicated machines in the ATLAS Control Room

Running reconstruction producing data quality histograms

Frequent updates from offline data quality monitoring to provide best feedback

Dedicated DQ shifter to raise the alarm

Control room monitoring

- Results
- Input
- DQ shifter

- Express CosmicCalo
 - Results
 - Input
 - System DQ experts
 - 1 min

- Calibration Alignment Noisy Cells
 - Results
 - Input
 - System DQ experts
 - 48 h

- Best effort calibration
 - Calibration constants
 - 1st update

- Tier-0
 - Cond DB (online)
 - Cond DB (offline)

- Oracle streams
- 2nd update
- Physics streams
- SFO / L2
- Calibration streams
- Express streams
See talk of Ric Bianchi for more on event displays
Tier-0 ~10k dedicated slots

First pass processing takes ~12 hours for fast data quality checks on ~2% data

Calibration streams processed to provide updated conditions within 48 hour calibration loop
An example: The Insertable B-Layer (IBL) exhibits temperature-driven distortion

Problem: Significant misalignment which biases the beamspot determination
Worsening problem would render the data unusable for physics

Solution: Implemented a procedure to promptly correct alignment and beamspot
Alignment procedure requires four iterations - resource heavy - centrally managed
Subsequently improved to correct all inner detector package movements within a run

Centrally manage as many calibration procedures as possible to optimise resource usage
Bulk data processing and data quality

Tier-0 ~10k dedicated slots

Launch bulk processing of all physics data after 48 hour calibration loop

Typically ~60M events per day
~60 TB per day
Histograms production running at Tier0 as part of core reconstruction

DQ assessment using web display for histogram presentation

Data rejection down to one minute

Defect database records problems

Final DQ logic combines defects to flag bad data

Output a Good Run List
Data Quality and Publications

ATLAS pp 25ns run: April-July 2016

<table>
<thead>
<tr>
<th>Inner Tracker</th>
<th>Calorimeters</th>
<th>Muon Spectrometer</th>
<th>Magnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>SCT</td>
<td>TRT</td>
<td>LAr</td>
</tr>
<tr>
<td></td>
<td>Tile</td>
<td>MDT</td>
<td>RPC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSC</td>
<td>TGC</td>
</tr>
<tr>
<td>98.9</td>
<td>99.9</td>
<td>100</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.6</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.8</td>
<td>99.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99.7</td>
<td>93.5</td>
</tr>
</tbody>
</table>

Good for physics: 91-98% (10.1-10.7 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at √s=13 TeV between 28th April and 10th July 2016, corresponding to an integrated luminosity of 11.0 fb⁻¹. The toroid magnet was off for some runs, leading to a loss of 0.7 fb⁻¹. Analyses that don't require the toroid magnet can use that data.

Data Quality efficiency for the ICHEP dataset

High efficiency in general (Toroid magnet problem made a significant dent in this dataset but now this is around 2%)

Publication-ready data available after around one week

Also thanks to success of the new ATLAS analysis model
The impressive LHC performance this year raised serious challenges

• The ATLAS Data Preparation met the challenges head on!

A similar overall workflow to that used successfully in Run 1

• Prompt processing of a fraction of data for fast DQ and calibrations
• Bulk processing launched after 48 hours

More workflows, especially critical and resource-heavy, have been centralised

• New ones added to improve detector performance

Data Quality assessment critical to ensure good DQ for physics

• Improved DQ in the control room to catch problems as early as possible
• Improved offline DQ workflows and tools for final assessment for physics

High DQ efficiency and fast turnaround for physics