GEANT4-based full simulation of the PADME experiment at the DAΦNE BTF

Emanuele Leonardi1, Venelin Kozhuharov2, Mauro Raggi1,3, Paolo Valente1

1INFN Roma, 2University of Sofia, 3Sapienza University of Rome
The Dark Matter problem

The Standard Model only includes <20% of the matter in the universe. From cosmological measurements we know that visible matter only accounts for a small part of the observed gravitational effects.

Can some kind of "Dark Matter" provide the missing contribution?

Galaxy rotation curve

Many open questions:
- What is Dark Matter made of?
- How does DM interact with SM particles?
- Do one or more new Dark Forces exist?
- How complex is the Dark Sector spectrum?
- …
The simplest Dark Sector model just introduces one extra U(1) gauge symmetry and a corresponding gauge boson: the “dark photon” or A'

Two possible modes of interaction with the SM

- Direct coupling to fermions
- Mixing with the QED gauge boson

In e^+ collisions on target, A' can be produced by:
- Bremsstrahlung
- Annihilation
- Meson decay

If no dark matter particles lighter than A' exist, A' can only decay into SM particles.

If any dark matter particle χ has $2M_\chi < M_{A'}$, then SM decays are strongly suppressed.
The PADME experiment

• PADME (Positron Annihilation into Dark Mediator Experiment) will look for invisible A' production in the annihilation channel $e^+e^-\rightarrow A'\gamma$

• A 550 MeV e^+ beam from the DAΦNE Beam Test Facility (BTF) will interact with the (at rest) e^- of a thin (100μm) diamond target.

• An electromagnetic calorimeter will measure the energy E_{γ} and angle θ_{γ} of the recoil photon.

• Evaluate the (invisible) A' mass from $M_{A'}^2 = (p_{e^-} + p_{\text{beam}} - p_{\gamma})^2$

• Goal: collect $O(10^{13})$ e^+ in 2018-2019
The PADME detector

Dipole MBP-S from the CERN SPS transfer line

Thin active diamond target 100 μm

Positron veto
1 cm scintillators with SiPM readout

Electron veto
1 cm scintillators with SiPM readout

EM Calorimeter
21×21×230mm³ BGO crystals with PMT readout

Small Angle Calorimeter
20×20×200mm³ PbGl with PMT readout

High Energy Position veto with SiPM readout

Positron beam

γ

A'
The diamond target

• Diamond (Z=6) is the rigid material with the best $ee(\gamma\gamma)/\text{bremsstrahlung}$ ratio

• Measure charge and position of the beam
 • $O(10^4) \ e^+/\text{bunch} @ 50 \ Hz$
 • <1mm spatial resolution
 • <10% charge measurement

• $20\times20\text{mm}^2$ polycrystalline diamond with 50-100µm thickness.

• 19 readout strips per side (X/Y readout) with 1mm pitch.

• Strips are graphitized with laser to avoid metallization.

• First prototypes for PADME tested in October 2015 and April 2016.
The electromagnetic calorimeter

- 616 BGO crystals
 - Recovered from one EM end-cap of the L3 experiment
 - Reshaped to $21 \times 21 \times 230 \text{mm}^3$

- BGO: high LY, high ρ, small X_0 and MR, long τ_{decay}

- Calorimeter with a cylindrical shape (R~300mm)
 - Inner hole (~$10 \times 10 \text{cm}^2$) to avoid bremsstrahlung pile-up
 - Angular acceptance: 20-75 mrad
 - Ø 19mm PMT readout

- Expected performances:
 - $\sigma(E)/E < 2\%/\sqrt{E}$
 - $\sigma(\theta) < 2$ mrad

A 5x5 crystals prototype was tested at BTF in July 2016
The Small Angle Calorimeter

- The bremsstrahlung rate along the beam axis is too high for BGO.
 - Cut a $\sim 10 \times 10 \text{cm}^2$ hole in EM calorimeter.
 - Add a fast Small Angle Calorimeter behind it.
 - Must tolerate a rate of ~ 10 clusters in 40ns.
- A good (i.e. fast and cheap) solution is represented by a Cherenkov radiator with fast PMT readout.
- Use 49 lead-glass blocs cut to $20 \times 20 \times 200 \text{mm}^3$ size.
 - Recovered from the Opal EM calorimeter, courtesy of NA62.
The charged particles veto system

- The PADME veto system will detect charged particles to reduce background from bremsstrahlung and Bhabha scattering.
- 3 detectors: electrons, low energy positrons, high energy positrons
- Use extruded plastic scintillator fingers
 - $10 \times 10 \times 184 \text{mm}^3$
 - SiPM readout
 - Time resolution $< 300 \text{ ps}$
 - Momentum resolution $O(\text{few\%})$ based on impact position along Z.
 - Efficiency better than 99.5\% for MIPs.

These sections are inside the magnetic field region.
GEANT4 simulation

• A GEANT4-based simulation of the full experiment was available since the early stages of the project (2014).

• It closely followed the evolution of the design and the technical choices of the collaboration.

• Used to verify the effects of proposed solutions on the recoil mass measurement resolution and to optimize construction parameters.
PADME MonteCarlo

- Realistic simulation of BTF beam
 - Bunch length, energy spread, emittance, beam spot, micro-bunching
 - All beam parameters are controlled via datacards

- Kinematics
 - e^+ on target simulated by GEANT4
 - Dedicated A' annihilation generator
 - Dedicated $e^+ e^- \rightarrow \gamma \gamma (\gamma)$ generator (CalcHEP)

- Realistic magnetic field map
 - Original field map from CERN
 - Re-measured at INFN-LNF
 - Tunable via datacards

- A fast simulation is available
 - Switch off beam dump simulation
 - Switch off e.m. showers in the SAC

$\text{beam/momentum} \ 550. \text{ MeV}$
$\text{beam/n_e_per_bunch} \ 5000$
$\text{beam/bunch_time_length} \ 40. \text{ ns}$
$\text{beam/position_x} \ 0. \text{ cm}$
$\text{beam/position_y} \ 0. \text{ cm}$
$\text{beam/position_x_spread} \ 1. \text{ mm}$
$\text{beam/position_y_spread} \ 1. \text{ mm}$
$\text{beam/direction} \ 0. \ 0. \ 1.$
Detector simulation

• All active detector parts are fully modeled and simulated
 • Diamond target
 • Vetoes scintillator fingers
 • ECAL BGO crystals
 • SAC lead-glass blocs

• Passive structures being added as they are defined
 • Magnet yoke and coils
 • Vacuum chamber
 • Target support and control structure
 • Vetoes support structures

• All relevant construction parameters are modifiable via datacards
 • Relative position of detectors
 • Size of target, BGO crystals, SAC blocs, veto fingers
 • Gap between BGO crystals

/Injector/ECal/CrystalSize 2.1
/Injector/ECal/CrystalLength 23.
/Injector/ECal/CrystalGap 0.1
/Injector/ECal/FrontFaceZ 230.
/Injector/Target/Size 2.
/Injector/Target/Thickness 100.
/Injector/Target/FrontFaceZ -50.
Detector studies with MC

- Study of EM calorimeter energy collection and resolution.
- Comparison with testbeam results to optimize digitization parameters.
 - ~200 photo-electrons per MeV
 - Zero-suppression if energy in crystal < 2 MeV
 - Cell-to-cell intercalibration errors ~10%
 - Residual difference due to beam energy resolution not included in MC.
A' mass measurement resolution

- Use MC to evaluate resolution on missing mass (M_{miss}) measurement as a function of $M_{A'}$.

- Candidate selection:
 - 1 cluster in ECAL
 - $E_{\text{min}}(M_{A'}) < E_{\text{cluster}} < E_{\text{max}}(M_{A'})$
 - 30 mrad < θ_{cluster} < 65 mrad
 - No in-time (± 2 ns) charged tracks in the veto system
 - No in-time (± 2 ns) γ with $E\gamma > 50$ MeV in SAC
 - Invariant missing mass in $M_{A'}^2 \pm \sigma(M_{\text{miss}}^2)$

- Use MC to evaluate backgrounds.
Conclusions

• PADME will search for the Dark Photon with mass up to 24 MeV in the $e^+e^-\rightarrow A'\gamma$ channel using the DAΦNE Beam Test Facility at INFN-LNF.

• Data taking will start in 2018 and will collect 10^{13} e$^+$ on target in 2 years.

• A full GEANT4-based simulation of the experiment has been available since the first phase of the project (2014).

• All relevant parameters of the detectors and of the beam can be controlled via datacards.

• The simulation is being used to validate and optimize the technical design of the experiment.
Spare slides
PADME Main Backgrounds

- **Signal** $e^+e^- \rightarrow \gamma A'$
 - $M_{\text{miss}} = M_{A'}$

- **BG SM annih.** $e^+e^- \rightarrow \gamma\gamma(\gamma)$
 - 1 lost γ

- **BG SM Brems.** $e^+N \rightarrow e^+N\gamma$
 - 1 lost e^+
PADME Sensitivity

- Based on 2.5×10^{10} 550MeV e^+ on target events simulated with GEANT4.
- Extrapolated to $10^{13} e^+$ on target, i.e. 2 years of data taking at 50% efficiency with a 40ns bunch length.
- Limit set at $N(A'\gamma) = \sqrt{N_{bg}}$
- Maximum $M_{A'}$ from $M_{A'}^2 = 2m_eE_{\text{beam}}$
 - $E_{\text{beam}} = 550\text{MeV} \rightarrow M_{A'} < 23.7\text{MeV/c}^2$
 - $E_{\text{beam}} = 1\text{GeV} \rightarrow M_{A'} < 32\text{MeV/c}^2$