STAR Reconstruction Improvements for Tracking with the Heavy Flavor Tracker

J. Webb, J. Lauret, G. Van Buren, V. Perevoztchikov, D. Smirnov
Charm quarks:
- Created early in heavy ion collisions through hard scattering
- Experience the full evolution of the system

Physics:
- High-pT provides test of energy loss mechanisms
- Low-pT extract medium properties from motion of heavy quarks in medium

Combinatorics are a challenge.

Topological reconstruction, i.e. associating decay daughters with a displaced vertex, necessary to bring backgrounds under control.

Requires precision tracking -- 50 μm DCA pointing resolution for 750 MeV kaons

\[D^0 \rightarrow K^- \pi^+ \]
\[c\tau \sim 100 \mu m \]
STAR: The Solenoidal Tracker At RHIC

Y2013 -- HFT engineering run
Y2014 -- Y2016 HFT Physics

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 T Solenoid Magnet</td>
<td></td>
</tr>
<tr>
<td>Time Projection Chamber</td>
<td>-1 < (\eta) < 1</td>
</tr>
<tr>
<td>BBC / ZDC / VPD</td>
<td></td>
</tr>
<tr>
<td>Barrel Time-of-Flight</td>
<td></td>
</tr>
<tr>
<td>Muon Telescope Detector</td>
<td></td>
</tr>
<tr>
<td>Barrel and Endcap EMC</td>
<td>-1 < (\eta) < 2</td>
</tr>
<tr>
<td>Heavy Flavor Tracker</td>
<td>o Silicon Strip Detector</td>
</tr>
<tr>
<td></td>
<td>o Intermediate Silicon Tracker</td>
</tr>
<tr>
<td></td>
<td>o Pixel Detector</td>
</tr>
</tbody>
</table>

![Diagram of STAR detector components](image)
The STAR Production Tracker: Sti

- Code well vetted, delivering world-class physics results for over a decade
- Follow-your-nose seed finder (default), CA beginning production
- Kalman-filter track fitter

- Simplified geometry and track propagation
 - Speed prioritized over accuracy of the geometry model and track propagation
 - Optimized for transverse physics at mid-rapidity ($\eta \lesssim 1.5$)
 - Performance has been sufficient for \sim1mm resolution of TPC

- Automatic converter creates most of our Sti geometry model from our primary (AgML) geometry description (AgML 2014 J. Phys.: Conf. Ser. 513 022036)

Investigated alternative tracker using full AgML/ROOT geometry with GEANT3 propagators -- found to be a factor-of-two slower than Sti.
Geometry and Track Propagation in STi

- Tracks propagate inward through a set of user-defined radial layers.
- Each concentric layer contains a list of volumes which a track may intercept.
- The test for intersection assumes a thin scatterer:
 - Track is within the width of the volume.
 - Full thickness of material is assumed.
- Only one intersection allowed per layer.
The HFT was inserted into STAR for the last half of the 2013 run. This engineering run provided initial hints that there would be obstacles to integration:

Observed large z-dependent DCA issues during the two time periods w/out HFT in track reconstruction.

Other Issues

- Saw evidence that dead material was skipped, especially radially-oriented volumes
- Missing second hits expected on “gapless” IST detector
- Significant reduction in speed: track reconstruction taking 2.5x longer with HFT as a passive detector. Longer if active.
Some of the observed misbehaviors a natural consequence of the Sti geometry and track propagation

- Intersection with a single volume per layer may miss material, or worse, hits
- Propagation through thin volumes works well, with minor edge effects.
- Tracks will usually miss a radially oriented layer, but those which intersect will see too much material.
Solutions were fairly straightforward to implement

- To ensure hits are not shadowed, search modified to only prioritize active detectors over dead material.
- Radially-oriented volumes split into multiple thin layers.
- Recovered multiple hits in overlap regions of the IST by splitting sensors and assigning to different layers.
- However, speed and DCA issues persisted.
The AgML/ROOT geometry model provides a detailed description of the detector. For example, the IST

- 10k physical nodes
- Composition of shapes (overlapping volumes)
- Uses most of the 16 GEANT3 shapes

The automated conversion averages over the daughters of a user-supplied list of physical nodes to generate the corresponding Sti volume.

Several issues with this scheme

- Averaging double counts overlapping “MANY” volumes
- Everything contained in a mother volume gets averaged in (can pull in heavy support materials into lightweight ladder assemblies).
- Material density was preserved, but volume (thus mass) of the objects may change
- Produces too many STI volumes, slowing down track reconstruction
Implementation of a native Sti geometry resulted in

- Significant simplification: 100x fewer volumes
- Nearly doubled reconstruction speed
- Resolved issues with DCA and detector resolution.

Plot DCAz vs pT for TPC-tracking with the HFT geometry in place.
After track-finding is performed in the TPC, tracks are propagated to the beamline, adding hits found in the HFT. Several incremental improvements investigated and applied --

- Increase tolerance for hits outside of volumes, accounting for misalignments of detectors
- Nudge hit to local-x position of detector before fit
- Adjust floor and ceiling (minimum and maximum) hit errors for HFT
- Allow HFT hits to be reused on multiple track candidates

Finding the *right* hits in the innermost layers was an issue with our previous silicon vertex tracker. That experience led us to…

- Enable tree search within the HFT (considers all possible track roads)
- Evaluate tracking resolution and quality with different numbers of HFT hits
The HFT detector has been successfully integrated into the STAR track reconstruction package, enabling charm measurements from the 2014 -- 2016 runs.

The Sti tracking software provides a streamlined geometry model and track propagation engine, providing better speed than general purpose solutions such as ROOT.

The tracker provides sufficient precision to meet the stringent tracking requirements for topological reconstruction of charmed hadrons, but requires significant effort on the part of developers to tune the software.

Stay tuned for new results at QM’17. Thank You!