
Michele Selvaggi
(on behalf of the Delphes collaboration)

CERN - UCL

CHEP 2016
11/10/2016

Delphes 3
Latest Developments

github.com/delphes

2

Detector simulation
● Full simulation (GEANT):

 - simulates particle-matter interaction (including showers, nuclear int.,

brehmstrahlung, photon conversions, etc ...) → 100 s /ev

● Experiment Fast simulation (ATLAS, CMS ...):

 - simplifies and makes faster simulation and reconstruction → 1 s /ev

● Parametric simulation (Delphes, PGS):

 - parameterize detector response, reconstruct complex objects

 B field propagation, Jets, Missing ET → 10 ms /ev

● Object smearing (Atom, Falcon, TurboSim):

 - from parton to detector object (lookup tables)

3

When Delphes?
● When to use FastSim?

 → test your model with detector simulation and you have limited resources
 → scan big parameter space (SUSY-like)
 → preliminary tests of new geometries/resolutions (future detectors)
 → educational purpose (bachelor/master thesis)

● When not to use FastSim?

 → very exotic topologies (HSCP, long-lived, ...) (NOT YET ...)

4

The Delphes project
● Delphes project started back in 2007 at UCL as a side project to allow quick

phenomenological studies

● Since 2009, its development is community-based
 - ticketing system for improvement and bug-fixes

 → user proposed patches, can be forked from github and make pull-requests

● In 2013, DELPHES 3 was released (DELPHES 2 NOT SUPPORTED ANYMORE !!):
 - C++ modular software

- Dependencies: gcc, tcl, ROOT
- is shipped with FastJet

● Delphes is itself distributed by various tools: MadGraph, MadAnalysis, CheckMate
● Widely tested and used by the community (pheno, Snowmass, Recasting, FCC, CMS

upgrades ...)

● Repository: github.com/delphes
● Website and manual: https://cp3.irmp.ucl.ac.be/projects/delphes
● Original publication: JHEP 02 (2014) 057 [1307.6346]

http://github.com/delphes
https://cp3.irmp.ucl.ac.be/projects/delphes
http://link.springer.com/article/10.1007/JHEP02(2014)057
http://arxiv.org/abs/1307.6346

5

What is Delphes?
● Delphes is a modular framework that simulates of the response of a

multipurpose detector in a parameterized fashion

● Includes:
 - pile-up

 - charged particle propagation in
 magnetic field
 - electromagnetic and hadronic calorimeters

 - particle flow

● Provides:

 - leptons (electrons and muons)
 - photons
 - jets and missing transverse energy (particle flow)
 - taus and b's

6

● Install ROOT from root.cern.ch

● Clone Delphes from github or download from website

● Type in shell:
./configure

make -j 4

● Run Delphes:
./DelphesSTDHEP [configuration_file] [output] [input]

./DelphesHepMC [configuration_file] [output] [input]

● Input formats: HepMC, StdHep, ProMC, LHE

● Output: browsable ROOT tree

Run Delphes

https://root.cern.ch/downloading-root
http://github.com/delphes/delphes
https://cp3.irmp.ucl.ac.be/projects/delphes

7

New Features

8

● You can now run the full MC/reconstruction chain with one simple command by
linking Delphes with Pythia8 (more info here).

● Set PYTHIA8 path variable and recompile Delphes:

export PYTHIA8=[path_to_pythia8_installation]

make HAS_PYTHIA8=true DelphesPythia8

● You can then directly either directly use Pythia8 matrix element, or use external
LHE (also with matching available).

● In both case the input to Delphes will be a Pythia8 “cmnd” file:

 ./DelphesPythia8 [detector_card] [pythia8_cmnd] [output]

● Avoids storing huge intermediary event files (hepmc), all the parton/hadron-
level information can accessed via the Particle branch in the output.

● If multiple weights were stored in LHE input, Delphes stores them in the
Weights branch in a vector.

Run Delphes with Pythia 8

https://cp3.irmp.ucl.ac.be/projects/delphes/wiki/WorkBook/Pythia8

9

● Given charged track hitting given calorimeter cell:

- are deposits more compatible with charged or charged + neutrals hypotheses?
- how to assign momenta to all resulting components ?

● We have two measurements (Etrk, σtrk) and (Ecalo, σcalo)
● Call Eneutral = Ecalo – Etrk

Algorithm:

If Eneutral / √ (σtrk
2 + σcalo

2) > S :
 → create PF neutral particle + PF track

Otherwise:
 → create PF track with (weighted) average energy wi = 1/σi

2

ECAL

HCAL

π +

Particle-Flow

10

Particle-Flow

Particle flow makes optimal use of Tracker and Calorimeter information

11

Timing
● Beamspot description with f(z,t)

customizable profile has been
included

● Time information is propagated
up calorimeters, and then
smeared

● Vertexing in 3D/4D has been
included

Lindsey Gray, Andrew Hart

CMS-DP-2016-008

12

Delphes in LHCb

Benedetto G. Siddi

● Integration of Delphes in LHCb framework has started in private branch
● Complete re-writing of ParticlePropagator module, accounting for:

 → asymmetric acceptance and non-rotational symmetry taken into account
 → account for pT kick in By field

● A first implementation of a full chain analysis has been done
● Currently working on correct emulation of efficiency and resolution of the

LHCb detector

13

Conclusions
● Delphes 3 has been out for two years now, with major improvements:

- modularity
- default cards giving results on par with published performance from LHC
experiments
- updated configurations for future e+e- and hh colliders
- interfaced within MadGraph5/Py8, CheckMate/MadAnalysis

● Delphes 3 can be used right away for fast and realistic simulation for
present and future collider studies

● Delphes is used both by experimentalist and theorists
● Continuous development (particle flow, vertexing, timing ...)
● Feel free to contribute!

14

Back Up

15

● The modular system allows the user to
configure and schedule modules via a
configuration file (.tcl), add modules,
change data flow, alter output
information

● Modules communicate entirely via
collections (vectors) of universal
objects (TObjArray of Candidate four-
vector like objects).

● Any module can access TObjArrays
produced by other modules using
ImportArray method:

ImportArray("ModuleName/arrayName")

Modular

16

● Delphes configuration file is based on tcl scripting language

● This is where the detector, data-flow, and output tree is configured.

● Delphes provides tuned detector cards for some detectors:

- ATLAS, CMS, ILD, FCC (LHCb in progress).

- can find other tunes in CheckMate, MadAnalysis.

● Order of execution of various modules is configured in the Execution Path:

 set ExecutionPath {

 ParticlePropagator

 TrackEfficiency

 ...

 Calorimeter

 ...

 TreeWriter

 }

Configuration file

17

Configuration file

input collection

output collection

parameters

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

