The Application of SNiPER to the JUNO Simulation

Guofu Cao, Ziyan Deng, Xiao Fang, Xingtao Huang, Weidong Li, Tao Lin, Zhengyun You, Jiaheng Zou

CHEP 2016
10-14 October 2016
San Francisco Marriott Marquis
Outline

• Introduction
 • JUNO experiment
 • JUNO offline software and SNiPER

• JUNO Detector Simulation Framework
• JUNO Electronics and Digitization Simulation
• Conclusion
JUNO Experiment

- **Location:** Jiangmen, Guangdong, China
- **Status:** Under Construction

Central detector
- Acrylic sphere + 20kt Liquid Scin. + ~17,000 20” PMT + ~34,000 3” PMT
- Water Cherenkov ~2000 20” PMT

AS: Acrylic sphere; **SSLS:** stainless steel latticed shell

AS: ID35.4m; **SSLS:** ID40.1m; **D43.5m**

Mainly includes:

- Framework, Simulation, Calibration, Reconstruction

Software Development Environment

- Language: C++ and Python 2
- OS: Linux (Scientific Linux 6, gcc 4.4)
- Framework: SNiPER
- Simulation: Geant4 9.4
- Dependent: XercesC, CLHEP, HepMC
- Software management: CMT & SVN
- Installation Tool: junoeenv (bash)

~ 10 official versions have been released, the latest one is J16v2r1-Pre3
SNiPER [CHEP2015, ICHEP2016]
Software for Non-collider Physics Experiments

- Task, a lightweight application manager, controls Event Loop.
- Other tasks could be executed by Incident mechanism.

User’s Application Layer
- In an **User Algorithm**:
 1. get data from memory
 2. calculation
 3. put results back to memory
- No need to care where the data comes from
- No need to care where the data will go
- Prepare data to be processed
- features such as geometry ...
- Collect algorithm results

Core Software Layer
- I/O: disk, DB, network, grid...

Python UI Layer
- run a batch job or interactively debug a module

Figure 1: An overview of SNiPER

Figure 3: Conditional execution of algorithm subsets
Detector Simulation Framework

- Integrate SNiPER & Geant4 (9.x).

Features:
- Lightweight simulation framework.
- Easy to migrate from standalone application.
- Support both batch and interactive modes.
- Support Geant4’s macro files/commands in Python.

Plan:
- Supporting multi-threading Geant4 (10.x).
Geometry Management (1)

- GDML description including 3” PMTs, node size ~54k PMTs, ~330k nodes
- Geant4 generation and ROOT conversion time ~30 sec
- File size: GDML file 22 MB, ROOT file 3 MB

The Application of SNiPER to the JUNO Simulation
Geometry Management (2)

- Most of detector elements is constructed from code.
 - Each part could be configured and constructed at runtime.
 - Useful for detector design and calibration units.

- JUNO prototype detector could be setup easily using the same simulation software.
MC Truth and User Action

- Modular design of User Action.

- Event Data Model (ROOTIO)
 - Separation of Header and Event, for lazy loading.

- Design, Pluggable and configurable.

- Other MC Truth are saved in plain TTrees using RootWriter.
Electronics and Digitization Simulation

- “PULL” workflow (data-driven)
 - Starts from ReadoutAlg.
 - Using SNiPER’s Task+Incident to call TriggerSimAlg when buffer is empty.

- Handle event mixing and event splitting gracefully.
 - Such as IBD events (prompt and delay signals)

- Each part is designed and implemented as a module.

```python
python tut_det2elec.py \
  --input IBD:ibd1.root \
  --input U:u.root \
  --rate IBD:1.0 \
  --rate U:3.0
```
Data validation and production

“JunoTest Production” supports both validation and production.
“.ini file” is used for configuration.

- Full chains of simulation and reconstruction are ready.
- First round validation is on going.
- Data Production will start soon.

Validation.ini

[JChain]
seed = 42
evtxmax = 500
njobs = 1
tags = e+_0.0MeV e+_1.398MeV

Production.ini

[JChain]
seed = 42
evtxmax = 1000
njobs = 100
tags = e+_0.0MeV e+_1.398MeV
Conclusions

• JUNO uses SNiPER as underlying framework.
• Based on SNiPER, simulation software was developed.
 • Detector simulation framework integrates SNiPER and Geant4.
 • Electronics simulation supports “PULL” workflow, allows hit level mixing.
• The full data processing chain is completed.
• MC Data challenge is preparing, will start soon.