
Conditions Release Architecture
Split into a client-side and a server-side (both use CondDBFW);
The minimum amount of data is sent through each HTTPS request to the server,
token-based authentication is used across requests;
The client-side is deployed through a single script, which copies the version of
CondDBFW that the target upload server is using.

Upload Metadata
Values telling the client-side which Conditions to upload from the
source given. This is required for the Conditions Release
Process:

Python object-oriented framework for consuming, manipulating
and releasing non-event data for the CMS alignment and
calibration
Joshua Dawes - CMS, CERN, The University of Manchester - joshua.dawes@student.manchester.ac.uk

The Alignment, Calibrations and Databases group at the CMS Experiment delivers Alignment
and Calibration Conditions Data to a large set of workflows which process recorded event
data and produce simulated events. The current infrastructure for releasing and consuming
Conditions Data was designed in the two years of the first LHC long shutdown to respond to
use cases from the preceding data-taking period. During the second run of the LHC, new use
cases were defined.
For the consumption of Conditions Metadata, no common interface existed for the detector
experts to use in Python-based custom scripts, resulting in many different querying and
transaction management patterns. A new framework has been built to address such use
cases: a simple object-oriented tool that detector experts can use to read and write

Conditions Metadata when using Oracle and SQLite databases, that provides a
homogeneous method of querying across all services. The tool provides mechanisms for
segmenting large sets of conditions while releasing them to the production database, allows
for uniform error reporting to the client-side from the server-side and optimizes the data
transfer to the server. The architecture of the new service has been developed exploiting
many of the features made available by the metadata consumption framework to implement
the required improvements.
This paper presents the details of the design and implementation of the new metadata
consumption and data upload framework, as well as analyses of the new upload service’s
performance as the server-side state varies.

CondDBFW is used for…
• SQL-free, object-oriented, instantiation-based querying of Conditions

Metadata in CMS web services, while using the web services’ connection pools if
necessary, and Python environments.

• Verifying integrity of Conditions data that has been released.
• Adjustments of Conditions Metadata, and the writing of scripts to automate

fixing of future problem instances.
• Simplifying Conditions Metadata querying during Conditions release.

Example of Querying by Instantiation
IOVs can be copied from an Oracle database (through a Frontier layer) to a local
SQLite database by…

Overview

Read in Conditions Metadata
(Tag and Tag’s IOVs).

Put Conditions Metadata and Upload
Metadata into dictionary.

If using SQLite database
file and either Tag or

IOVs are not found, exit.

Begin upload - ask server for an upload session.

Preprocessing:
- Convert all sinces to Lumi-based.
- Set source since to first IOV since (in list

ordered by since) if not given.

Was
upload session

given?

Was the —fcsr-filter
flag given?

yes

Without an upload session,
nothing can be done. Exit.

no

Ask server for FCSR of given
Tag synchronization type, then
apply FCSR Filtering algorithm

to IOVs.

yes

no

no
Take a list of hashes from the

final list of IOVs.

Send hashes to server, and get back list of
hashes not found in destination database.

Send payload of each hash not found.

Encode each BLOB as Base64
and send in body of request.

Finally, send Metadata dictionary.
This is a mix of Conditions and

Upload Metadata.

Write logs - this involves finalising client-
side log, and receiving server-side log in

response from Metadata upload.

Report completion and log names to the user.

Use this list to check for hashes
that were found on the server,
but not found locally.

5 Payloads (≈ 255 MB of data) were sent to the Conditions database in the plot
shown, using the FCSR Filtering and Hash Checking optimisations. Hash Checking

For each Payload proposed for sending, only send if a query to
the destination database for the Payload’s hash yields no results.
Green line - 1st upload - all new Payloads, so needed to be sent ≈ 45
seconds.
Blue line - 2nd upload - no new Payloads ≈ 6 seconds.
Hence, Hash Checking reduced upload time by an order of magnitude.

FCSR (First Condition Safe Run) Filtering
FCSR = first run at which Conditions can be added without
overwriting already stored (and frozen) Conditions.
Using the Conditions synchronization given by the —fcsr-filter
flag, find the FCSR for that synchronization and filter IOVs on the
client-side according to this FCSR.
Allows preparation of IOVs for insertion into a synchronization by validating
them early.
Applied for the blue line upload and filtered 5 Payloads down to 1, hence
FCSR Filtering is also an optimisation.

Optimisations and their Results

Abstract

Vertical line = end
of Payload insertion

Obtaining a connection object
from CondDBFW import shell

con = shell.connect() # Frontier

Instantiating a CondDBFW Conditions Metadata object ≡
selection of a row
tag = con.tag(name=“test_tag”)

Column to
query

Type defines how
to query

Writing the new data to another database
sqlite_con = shell.connect(“sqlite://db.sqlite”)

sqlite_con.write_and_commit(iovs)

CondDBFW’s internal type system allows using method
chaining to process data
iovs = tag.iovs().data() “Give me a wrapped list of tag’s IOVs. Then,

unwrap that list to get the Python list of
CondDBFW IOV objects.”

http://cms-alcadb-pub.web.cern.ch/cms-alcadb-pub/
publications/2016/CHEP-Poster-cond-fw-upload.pdf See CHEP 2016 Proceedings for the paper.

mailto:joshua.dawes@student.manchester.ac.uk
mailto:joshua.dawes@student.manchester.ac.uk

