
Configuration validation in the
art event-processing framework
Kyle J. Knoepfel, Fermi National Accelerator Laboratory

The art event-processing framework loads at run-time a set of

modules to create workflows that serve in data acquisition,

simulation generation, reconstruction algorithm execution, and

physics analysis.

art processes are configured by a collection of user-specified

parameters defined using the FHiCL language. To aid users in

properly configuring their processes, a configuration retrieval,

description, and validation suite has been implemented that:

• has a single point of maintenance for users,

• can represent in C++ an arbitrary FHiCL structure, and

• can be enabled at the user level without breaking existing

workflows and C++ source code.

Atom: a named value with no

underlying structure.

Sequence: a named list of un-

named values.

Table: a named collection of

name-value pairs.

FHiCL language

Configuration representation in C++

Module description and validation

C++ implementation aspects

Additional features

verbose: false

particleIDs: [11, 13]

g4settings: {

shape: sphere

radius: 2.0 # mm
}

The Fermilab Hierarchical Configuration Language is the

language used for configuring art processes. Configuration

parameter names and their associated values are classified in

three ways:

If a user wants to validate the above configuration in his/her

module, the following would be specified in the C++ source code:

struct Config {

Atom<bool> verbose { Name("verbose") };

Sequence<int> particleIDs { Name("particleIDs") };

struct G4Settings {

Atom<string> shape { Name("shape"), "sphere" };

Atom<double> radius { Name("radius"),

Comment("Units are mm.") };

};

Table<G4Settings> g4Settings { Name("g4Settings") };

};

The above example is a typical module configuration. Note that

nested tables and sequences (and tables in sequences) are

allowed, leading to configurations with arbitrary depth.

$ art --print-description G4Module

moduleLabel: {

module_type: G4Module

verbose : <bool>

particleIDs: [<int>, ...]

g4Settings : {

shape: "sphere" # default

Units are mm.

radius: <double>

}
}

For a module that supports

the configuration above

(e.g. G4Module), a

description similar to the

one at the right is provided

by art.

Suppose a user were to

mis-specify shape as

‘Shape’, an error similar to

the following would be

emitted:

The implementation of the suite relies heavily on modern C++

facilities (C++11/14):

• variadic templates for representing heterogeneous sequences,

• lambda expressions for configuration tree-walking and

conditional configuration based on the value of a previously

validated parameter,

• automatic type deduction, etc.

Adoption of such C++ techniques provides a type-safe suite,

moving error detection, when possible, to the compile-time stage

instead of the run-time stage.

Any parameters prefaced with '#' are optional.

Unsupported parameters:

+ g4Settings.Shape [./module.fcl:6]

File name and
line number of
parameter.

The design of the suite was informed from interactions with art

users. Based on those discussions, a large number of additional

features have been included in the suite. Additional parameter

types include:

• optional parameters – where it is permitted to omit supported

parameters without specifying a default in source code,

• delegated parameters – where the parameter itself must be

present, but its value (atom, sequence, or table) is unspecified,

• conversion parameters – where a configuration sequence can

be converted directly to a user-specified type, without having to

retrieve “by hand” individual sequence elements and convert

them to the relevant type.

Introduction

The Atom, Sequence, and Table class templates receive a

template argument that specifies the type to which the FHiCL

parameter should be converted within the C++ code.

The validation system supports defaults in source code (e.g. the

shape parameter), as well as comments to be printed out when

the description is requested (e.g. the radius parameter).

Deployment in art and its experiments

User feedback regarding the suite has been positive. Almost all

art-provided facilities enable configuration validation and

description. Individual experiments that use art are adopting the

suite in their own code according to their own needs.

