


EOS developments

Elvin Sindrilaru - on behalf of the 
EOS team and IT Storage Group

CHEP 2016 – San Francisco



Outline
• EOS architecture

• Releases and branches

• EOS FUSE status and improvements

• EOS Kinetic integration

• Future namespace architecture

10/10/2016 EOS developments 3



EOS architecture

• Disk only physics file storage

• In memory hierarchical 
namespace

• File layouts (default 2 replicas)

• Physics data & others

• Low latency access

10/10/2016 EOS developments 4



EOS releases and branches

• Production version
• Branch: beryl_aquamarine
• Release number: >= 0.3.210

• Development version (master)
• Branch: citrine
• Release number: >= 4.1.4
• Requires XRootD 4.4.0

• Feature branches get merged into master e.g. 
kinetic, geo-scheduling, namespace devel. etc.

10/10/2016 EOS developments 5



EOS FUSE status
• Goal: Help AFS retire gracefully

• Improved meta-data caching using the Kernel
buffer cache

• Faster directory listing using bulk meta-data
queries

• Multi-user mount supporting user private Kerberos and X509
authenticated connections

• Already deployed on lxplus and lxbatch
• Supports user and session bindings
• Use autofs for better use experience

10/10/2016 EOS developments 6



EOS FUSE multi-user mount

10/10/2016 EOS developments 7



EOS FUSE latency optimisations
• Write-back cache with request aggregation

• Lazy-open implementation RO/RW
• Separate meta-data and data paths
• Data-server open happens on the first I/O operation
• Hide latency using asynchronous open on data-server

10/10/2016 EOS developments 8



• Kinetic Open Storage Project
• HDDs with Ethernet interface
• Key-value instead of block interface
• Multi-vendor support: Seagate, Dell, Toshiba,

RedHat, Cisco etc.

• Benefits
• Reduced total cost of ownership (TCO)

• Robustness & scalability – built-in replication, compression and 
CRC

• Simple abstract interface – future proof against storage technology 
changes. Supported operations: put, get, delete, getnext etc.

• EOS integration done by Paul Hermann Lensing, Seagate

EOS Kinetic integration

10/10/2016 EOS developments 9



How EOS uses Kinetic?

• Local cluster

• Attached to each individual data-server

• Add Kinetic as a new IO Plugin

• EOS is completely agnostic of the underlying IO 
access type

10/10/2016 EOS developments 10



EOS with Kinetic local clusters

10/10/2016 EOS developments 11



EOS with Kinetic local clusters

10/10/2016 EOS developments 12



EOS Kinetic multi-path
• One Kinetic cluster shared by many data-

servers

• Requires load-balancing and concurrency 
resolution  Kinetic aware-scheduling

• Fewer data-server can supply higher storage 
capacity

• Data-server  Kinetic gateway
• Fully utilize the combined data-server network 

capacity

10/10/2016 EOS developments 13



EOS Kinetic multi-path

10/10/2016 EOS developments 14



What is the EOS namespace?
• C++ library used by the EOS MGM node single-threaded
• Provides API for dealing with hierarchical collections of 

files

• Filesystem elements
• Containers & files

• Views
• Aggregate info about filesystem elem.
• E.g QuotaView, FileSystemView etc.

• Persistence objects
• Objects responsible for reading and storing filesystem elements
• Implemented as binary change-logs

10/10/2016 EOS developments 15



Namespace architectures pros/cons

• Pros:
• Using hashes all in memory  extremely fast
• Every change is logged  low risk of data loss
• Views rebuilt at each boot  high consistency

• Cons:
• For big instances it requires a lot of RAM
• Booting the namespace from the change-log 

takes long

10/10/2016 EOS developments 16



EOS Namespace Interface
• Prepare the setting for different namespace implementations
• Abstract a Namespace Interface to avoid modifying other parts 

of the code

• EOS citrine 4.*

• Plugin manager – able not only to dynamically load but also stack 
plugins if necessary

• libEosNsInMemory.so – the original in-memory namespace 
implementation

• libEosNsOnRados.so – possible implementation on top of libRados

• libEosNsOnFilesystem.so – possible implementation on top of a 
Linux filesystem

10/10/2016 EOS developments 17



Why Redis?
• Redis – in-memory data structure store
• Separate data from the application logic and user 

interface
• Supports various data structures: strings, hashes, 

lists, sets, sorted sets etc.

• Namespace implementation: libEosOnRedis.so

10/10/2016 EOS developments 18



XRootD and Redis

10/10/2016 EOS developments 19

• Replace Redis backend with XRootD

• Implemented as an XRootD protocol plugin – to be 
contributed upstream

• XRootD can use RocksDB as persistent key-value store



Namespace HA

10/10/2016 EOS developments 20

• Ensure high-availability using the Raft 
consensus algorithm



Summary

10/10/2016 EOS developments 21

• EOS FUSE
• Strategic development to satisfy as many use-cases 

as possible

• EOS Kinetic plugin storage backend
• Evaluated different deployment scenarios
• Fully integrated with the existing system

• EOS Namespace
• Separate the data form the application logic 
• Prototype on top of Redis and HA using Raft




	Slide Number 1
	EOS developments
	Outline
	EOS architecture
	EOS releases and branches
	EOS FUSE status
	EOS FUSE multi-user mount
	EOS FUSE latency optimisations
	EOS Kinetic integration
	How EOS uses Kinetic?
	EOS with Kinetic local clusters
	EOS with Kinetic local clusters
	EOS Kinetic multi-path
	EOS Kinetic multi-path
	What is the EOS namespace?	
	Namespace architectures pros/cons
	EOS Namespace Interface
	Why Redis?
	XRootD and Redis
	Namespace HA
	Summary
	Slide Number 22

