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Startup

* Provide HPC data transfer solution (i.e. SW + transfer
system reference design):

* state of the art, efficient, scalable high speed data transfer
« QOver carefully selected demonstration hardware
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* No storage involved just DTN to DTN mem-to-mem
« Extended locally to 200Gbps

* Here repeated 3 times

* Note uniformity of 8* 25Gbps interfaces.

Receive speed (BOTTOM)

50 Gbp: l

« Can simply use TCP, no need for exotic proprietary protocols
* Network is not a problem
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 On the other hand, file-to-file transfers are at the mercy of
the back-end storage performance.

« Even with generous compute power and network
bandwidth available, the best designed and implemented
data transfer software cannot create any magic with a
slow storage backend
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XFS READ performance of 8*SSDs in a file server
measured by Unix fio utility
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Queue Size Read Throughput
SSD busy
800% 3500 20GBps
|- |!_!..I.1i._.||'
600% it
2500 by 15GBps
400%
1500 10GBps
200%
15:16 15:18 15:16 15:18 5GBps
Data size = 5*200GiB files similar to
typical LCLS large file sizes 0GBps
15:16 15:18

Note reading SSD busy, uniformity, plenty of objects in queue

yields close to raw throughput available
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SSD write throughput

10GBps
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Queue size of
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SSD write throughput
SSD husy o
=5 -|.|I|,-.-. '
rﬁﬁhl 10GBps
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4 | ¥

Queue size of
pending writes

P W B N i

50

Write factor 2 slower than read

File system layers can’t keep queue full (factor
1000 less items queued than for reads)
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S eed breakdown
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File speeds Write/Read

38GBps  24GBps 63%
BeeGFS+XFS 21GBps  12GBps 57%
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g

Parallel file system further reduces speed to
50%(write)-55%(read) of XFS 11
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Elephant File-to-file transfer with encryption LOSF File-to-file transfer With encryption

Copyright © Zettar Inc. 2013 - 2016



=] -

Over 5,000 mile ESnet OSCARSs
circuit with TLS encryption

ESnet

ENERGY SCIENCES NETWORK

Copyright © Zettar Inc. 2013 - 2014 .



ESnet

ENERGY SCIENCES NETWORK

P
-

—

Over 5,000 mile ESnet OSCARSs
circuit with TLS encryption

et/ o ) _

\\\@%‘) 9,000-mile

long loop

clsco Mellanox ) QIC fhmknarﬁ}

Copyright © Zettar Inc. 2013 - 2014 .

[.lll-lllu YiYi @ I
<]
LID-STA
RIVE




J"'-'_\_\'\-\.x
'

ESnet

ENERGY SCIENCES NETWORK

Over 5,000 mile ESnet OSCARS

circuit with TLS encryption
Transmit sp@@d

\ 70Gbps
_N.J‘\ / %n___/ 5"leps // \ﬁ\
' [~ — —
\3‘_\\‘* > 5,000-mile  30Gbps | == =\
— long loo ‘ |
- £ 1!G bps
© T T22:24 22125 ©22:26722:27
7OGbps Recelve S’ﬁé*eﬁ" “
o= =
il A o T2 AIC tkearts
C I S c o SOL[;[;—I:.S,EATE
Copyright © Zettar Inc. 2013 - 2014 13




ESnet

ENERGY SCIENCES NETWORK

Over 5,000 mile ESnet OSCARSs
circuit with TLS encryption

u\ o 70Gbps Transmitf,p@@d
B~ >L_,___’———-—_. 50Gbps

\ \__ ...... 4
M\\“‘k 7 5,000-mile 30Gbps
B long loop 10Gbps

" 22:24
Degredation of 15% for 120ms  7ecbps

RTT loop.

50Gbps

e
L

alvafe AN\ @ (inteD

CISCO. Mellanox inside”

SOLID-STATE
DRIVE

Copyright © Zettar Inc. 2013 - 2014 .



Conclusion

14



Conclusion

Network is fine, can drive 200Gbps, no need for proprietary protocols

o An
ol e M\

14



Conclusion

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer

14



Conclusion

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability

- Today limited to 80-90Gbps file transfer
Work with local vendors

14



Conclusion

1 AL

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer

Work with local vendors

- State of art components fail, need fast replacements
* Worst case waited 2 months for parts

P e A

14



Conclusion

1 AL

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer
Work with local vendors
- State of art components fail, need fast replacements

* Worst case waited 2 months for parts
Use fastest SSDs

P e A

14



Conclusion

1 AL

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer

Work with local vendors

- State of art components fail, need fast replacements
* Worst case waited 2 months for parts

Use fastest SSDs

«  We used Intel DC P3700 NVMe 1.6TB drives

P e A

14



Conclusion

1 AL

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer

Work with local vendors

- State of art components fail, need fast replacements
* Worst case waited 2 months for parts

Use fastest SSDs

We used Intel DC P3700 NVMe 1.6TB drives

* Biggest also fastest but also most expensive
* 1.6TB $1677 vs 2.0TB $2655 for 20% improvement

P e A

14



Conclusion

1 AL

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer

Work with local vendors

- State of art components fail, need fast replacements
* Worst case waited 2 months for parts

Use fastest SSDs

We used Intel DC P3700 NVMe 1.6TB drives

* Biggest also fastest but also most expensive
* 1.6TB $1677 vs 2.0TB $2655 for 20% improvement

P e A

Need to coordinate with Hierarchical Storage Management (HSM), e.g. Lustre +

Robin Hood

14



Conclusion

1 AL

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer

Work with local vendors

- State of art components fail, need fast replacements
* Worst case waited 2 months for parts

Use fastest SSDs

We used Intel DC P3700 NVMe 1.6TB drives

* Biggest also fastest but also most expensive
* 1.6TB $1677 vs 2.0TB $2655 for 20% improvement

P e A

Need to coordinate with Hierarchical Storage Management (HSM), e.g. Lustre +

Robin Hood
We are looking to achieve achieve 80Gbps = 6 PB/wk

14



Conclusion

1 AL

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer

Work with local vendors

- State of art components fail, need fast replacements
* Worst case waited 2 months for parts

Use fastest SSDs

We used Intel DC P3700 NVMe 1.6TB drives

* Biggest also fastest but also most expensive
* 1.6TB $1677 vs 2.0TB $2655 for 20% improvement

P e A

Need to coordinate with Hierarchical Storage Management (HSM), e.g. Lustre +

Robin Hood
We are looking to achieve achieve 80Gbps = 6 PB/wk
Parallel file system is bottleneck

14



Conclusion

1 AL

Network is fine, can drive 200Gbps, no need for proprietary protocols

Insufficient IOPS for write < 50% of raw capability
- Today limited to 80-90Gbps file transfer

Work with local vendors

- State of art components fail, need fast replacements
* Worst case waited 2 months for parts

Use fastest SSDs

We used Intel DC P3700 NVMe 1.6TB drives

* Biggest also fastest but also most expensive
* 1.6TB $1677 vs 2.0TB $2655 for 20% improvement
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Need to coordinate with Hierarchical Storage Management (HSM), e.g. Lustre +

Robin Hood

We are looking to achieve achieve 80Gbps = 6 PB/wk
Parallel file system is bottleneck

* Needs enhancing for modern hardware & OS’

14



More Information

e LCLS SLAC->NERSC 2013
« http://es.net/science-engagement/case-studies/multi-facility-workflow-case-study/
« LCLS Exascale requirements, Jan Thayer and Amedeo Perazzo
« https://confluence.slac.stanford.edu/download/attachments/178521813/ExascaleReq
uirementsLCLSCaseStudy.docx

Questions

 Also emalil cottrell@slac.stanford.edu p
@

. %
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