

CephFS: a new generation storage platform for Australian High Energy Physics

Goncalo Borges, Sean Crosby, Lucien Boland

CoEPP & Research Computing

ARC Centre of Excellence for Particle Physics at the Terascale

- Leads Australia in the field of HEP research
- Joins experimental and theoretical researchers from different universities
 - Adelaide, Melbourne and Monash, Sydney
- Provides the support for the Australian participation in major international collaborations: ATLAS at LHC / CERN and BELLE II at SuperKEKB / Japan
- RC team is an enabler for CoEPP's scientific discovery and research.
 - Responsible for meeting the large-scale computing requirements needed by CoEPP's international collaborations and local researchers:
 - Operation of a Tier-2 for ATLAS
 - Most available, top 3 reliable ATLAS site since Oct / 2014
 - 11500 HS06 pledge CPUs (PBS/Torque, MAUI) + 1.2 PB of data (DPM)
 - Support all aspects of local scientific computing activities
 - Local NFS shares at each CoEPP pool
 - Elastic central computing service, capable to scale up / down resources, in Nectar OpenStack Cloud (\rightarrow 700 cores): 2014 J. Phys.: Conf. Ser. 513 032107

'Tier-3' services

Why Ceph / CephFS?

Why Ceph?

- > Open source / Community driven
 - · HEP involvement already on-going
- > Designed to work with commodity hardware
 - Self recovering / healing behaviour
 - No single point of failure
- High granularity of data operations customizations
- Different data access methods
- Integration with other infrastructures (libvirt, openstack,)

• Why CephFS?

- > The POSIX-like requirement
- The capability to make the filesystem available in different geographical locations
- The metadata in RADOS
 - Jewel 10.2.X (X = 0,1,2,3)
 - CephFS <u>stable</u> release (note that stable ≠ production) http://docs.ceph.com/docs/master/cephfs/best-practices/

'Pre-production setup'

- > 4 Dell R620 x 8 (3TB) OSDs (9.2.0)
- Jornals in a separate OSD partition
- A single host mount cephfs (kernel)
- Single MDS server (32 GB RAM)

Single FIO bechmark

- > Sequential write and read, random write and read.
- > Files of 8 GB; ioengine=libaio; iodepth=64; direct=1.
- Client cache purged before each test
- More interested in understand CephFS layouts and File stripping

CephFS layouts and file stripping

- Client writes the stripe units to their corresponding objects in parallel
- Since objects get mapped to different placement groups and further mapped to different OSDs, each write occurs in parallel at the maximum write speed
- Layouts are defined as extended attributes at a directory level

getfattr -n ceph.dir.layout /cephfs/objectsize4M_stripeunit512K_stripecount2 ceph.dir.layout="stripe_unit=524288 stripe_count=2 object_size=4194304 pool=cephfs_dt"

0:	SD 24	0SD 5	REPLICA 0 OSD 28	OSD 16		<u>OSD</u> 23	0SD 17	REPL:	CA 1 OSD 3	OSD 2	OSD 7	0SD 14	REPL	ICA 2 OSD 9	0SD 29
o b -	O O O O O O O O O O	/obj 1' +======= stripe		2\ /obj 3\ ==+ +======+ e stripe unit 17	ob.ject set O	/obj 0\ +====================================	/obj 1\ +====================================	l set	/obj 2\ =======+ stripe unit 16 ======/		stripe unit 2 stripe unit 4 stripe unit 6 stripe unit 8 stripe unit 8 stripe unit 10 stripe unit uni	stripe unit 3 stripe unit 5 stripe unit 7 stripe unit 7 stripe unit 9 stripe unit 1 stripe unit			\ /obj 3\ + +======+ stripe unit 17
-	12 stripe unit 14	13 stripe unit 15				12 stripe unit 14	13 				12 stripe unit 14	13 stripe unit 15	,		

Single FIO bechmark (stripe unit effect)

Single FIO bechmark (stripe count effect)

Multithread FIO bechmark

Production Setup

Ceph Object Storage Cluster

- 3 monitors (physical hardware)
- > 11 storage servers, 112 OSD, 305 TB of raw storage
 - Centos7, 4 GB of RAM / OSD
 - 7 Dell PowerEdge R620 storage servers
 - PERC H710 Mini internal controller, PERC H810 external controllers
 - 4 storage servers x 8 OSDs (3 TB/each) + 3 storage servers x 16 OSD (3 TB /each)
 - 4 Dell PowerEdge R710
 - PERC 6/i internal controller, IBM Server RAID M5025 external controller
 - 8 OSD (3 TB / each) per storage server
 - Internal network with MTU 9000, txqueuelen + TX/RC buffer tunning
 - Intel DC S3550 SSDs (120 GB) for OSDs journals (4 OSDS: 1 SSD)

> CephFS

- Dedicated pools for CephFS data and metadata; size=3, min_size=2 (3 replicas)
- Active MDS → Dell PowerEdge R520, 32 GB RAM + 8 GB SWAP
- Standby-Replay MDS → VM 8 GB RAM + 8 GB SWAP
- > 200 ceph-fuse clients

Enhanced 'Tier-3' services

Tier-2 integration (StoRM / xrootd)

- StoRM
 - Uses POSIX filesystem as data backed
 - Allows to set group ACLs
- Xrootd (using its posix driver)
- ATLAS DDM and FAX integration
 - A secondary ATLAS LOCALGROUP DISK served by cephfs (using the kernel client)
 - Read access for local atlas users

Summary / Conclusion

- CephFS was 'kind of' forced' on us ...
 - Due to the geographical nature of our ARC centre
 - Due to the collaborative nature of HEP research / researchers
- CephFS is in 'Production' for more than an year
 - Started with Infernalis and now in Jewel
 - Researchers are heavily using it. Apart from some minor issues (from a user's perspective), researchers are happy
- Managing CephFS...
 - > Deploying and installing is quick and easy; continuous operation is difficult. Problems are, most of time, only visible 'a posteriori.
 - Software (both Ceph and CephFS) a bit buggy
 - Some 'hairy' issues we already detected from a 'site admin' perspective
 - No real showstoppers but with some complexity involved
- The disclaimer to our users is: "Just put data there you can regenerate or retrieve from somewhere else"

Fall HEPIX 2016 ...

All the technical details (issues and tuning):

https://indico.cern.ch/event/531810/contributions/2309925/

- Compilation issues / restrictions in SL6
- Ceph-fuse performance and configuration
 - client tuning
 - performance over wan
 - understanding memory usage, threads,...
- Cephfs recovery tools
- MDS bugs and issues

BACKUPS

Ceph (a nutshell explanation)

- Ceph is a cutting edge, open source, distributed data storage technology
 - > Based on intelligent object storage devices (OSD), a combination of CPU, network interface, local cache and underlying disk space.
 - Clients can use multiple access methods:

- Data is stripped by writing byte ranges to predictable (variable size) named objects, grouped in placement groups, and delivered to OSDs...
 - According to a specific but configurable algorithm (CRUSH).
 - Many configuration rules can be set to control data access, replication, distribution and integrity, with high focus on scalability, performance and redundancy.

CephFS (a nutshell explanation)

POSIX compliant filesystem

- > Drop in replacement for any other local or network filesystem
- Scalable data and metadata: objects stored directly in RADOS
- Cluster of metadata servers
- Extra functionality: snapshots, recursive statistics

- Jewel 10.2.X (X = 0,1,2,3)
 - CephFS <u>stable</u> release (note that stable ≠ production) http://docs.ceph.com/docs/master/cephfs/best-practices/

CephFS Clients

CephFS clients (fuse vs kernel)

- The kernel client provides the best performance. However, it is always outdated in terms of bug fixes and enhanced functionalities.
- > We opted for the fuse client because
 - Flexibility: Works in user space
 - Reliability: Synced with latest developments
 - Portability: Easily patched, recompiled and deployed.

CephFS (10.2.2) under SL6.

- ➤ No support for RH6 flavours because it relies on C++11 features only available in GCC > 4.7. SL6 default GCC version is 4.4
- Compile ceph in SL6 with GCC 4.8, Python 2.7, Fuse 2.9.2 and Boost 1.53
- ceph-fuse Started by puppet and enabled via Environment Modules.
- Normally running 200 ceph-fuse clients, mostly over wlan, with the potential to scale up once more VMs are started on Nectar cloud to satisfy demand.

CephFS MDS

- Stable configuration (one active MDS + standby-replay MDS)
 - Currently single threaded, SSD pools may help performance but not critical

MDS is (mostly) about RAM

- > You want to cache as many inodes as possible.
- > The default number of Clnodes to cache is 100k. The size of metadata structures is:
 - Clnode = 1400 bytes; CDentry = 400 bytes; CDir = 700 bytes → 2KB (?)
- \blacktriangleright A 'back of an envelope' calculation give a way to low value 100k * 2KB \simeq 200 MB
- You should increase 'mds cache size' if you have available RAM

Ceph OSDs

