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Problems with Xrootd-based Data Federations
• No directory listings: more like GET/

PUT. 

• Foreign command line tools: xrdcp 
(or stashcp), not cp. 

• They are difficult to setup for 
opportunistic VO’s; OSG has already 
created one StashCache. 

• USERS WANT POSIX!
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File service -> File system
• Users, in short, want to turn the global, read-only file service into a 

global, read-only filesystem. 

• Further, we want one safe to mount on 100,000 hosts where users 
may do profoundly dumb things on the namespace (“The ls -
lhR Problem”). 

• Well, this sounds familiar: CVMFS.

Can we use CVMFS to serve the POSIX interface and our data 
federations to serve the data?



Times They are A Changin’
• Xrootd data federation: the CVMFS FUSE process speaks HTTP.  Our federation must export this 

protocol => Use Xrootd’s HTTP(S) support. 

• CVMFS: 

• Client must follow HTTP-based redirects. 

• We cannot change, alter, or rename the files inside the federation for CVMFS. 

• Files in the data federation are saved by the logical file name and uncompressed. 

• CVMFS wants files saved by their content address (e.g., SHA-1 hash) and compressed. 

• CVMFS catalogs now have new file attributes that denote compression type (compressed / 
uncompressed) and storage type (file name / content address). 

• We need a mechanism to publish files without downloading them to the repository server.



Repositories
• We have a series of 4 repositories we maintain: 

• nova.osgstorage.org - Repo from XrootD data source at FNAL

• stash.osgstorage.org - Repo built from user accessible storage 
at OSG-Connect

• cms.osgstorage.org - Repo of the CMS data federation 

• ligo.osgstorage.org - Repo of LIGO data stored at Nebraska



Repositories
• Let’s take a closer look at two of these: 

• nova.osgstorage.org - Repo from XrootD data source at FNAL

• stash.osgstorage.org - Repo built from user accessible storage 
at OSG-Connect

• cms.osgstorage.org - Repo of the CMS data federation 

• ligo.osgstorage.org - Repo of LIGO data stored at Nebraska



stash.osgstorage.org
• Goal: publish the “Stash” filesystem at UChicago, exposed via the 

StashCache data federation, into CVMFS: 

1. A periodic job scans the Stash filesystem at UChicago, recording 
differences since last scan. 

•  This looks at the world-readable contents of /stash/$USER/public. 

2. Job puts records files’ metadata (size, checksum) into the CVMFS 
repository server.  Data stays on Stash. 

3. CVMFS repository is published with new contents.



StashCache
• Managing data opportunistically at 

storage elements requires a CMS- 
or ATLAS-sized commitment. 

• StashCache uses distributed 
caches across the country. 

• Data origin is the Stash service on 
OSG-Connect. 

• Users write data into Stash, and 
read the data from jobs through 
StashCache

stashcache.github.io

http://stashcache.github.io
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Overview of CVMFS and StashCache
• Regular XrootD StashCache Federation 

• CVMFS contacts the caching servers 
over HTTP 

• Caching servers contact the federation 
for the data. 

• Note the caching layer protects the 
origin server from load: very different 
from the CMS AAA model. 

• Worker nodes pull data from the 
caching servers.



Uses
• Large datasets which cannot be cached within the existing Squid-

based caching infrastructure (tuned for working set size of 10GB): 

• Full Blast DB’s 

• Nova Flux Files… 

• Targeting working set sizes* from 10GB to 10TB.  Will work fine for 
smaller sizes, but OASIS may be more efficient for software 
distribution.

*Number of unique bytes touched by a workflow



User Perspective

• Copies data onto OSG-Connect using scp, Globus Online - pick 
your favorite. 

• Put data into /stash/<user>/public 

• Wait for a while for the data to be published (~1 hr) 

• Use data on the worker nodes!



Stash -> CVMFS Delay
• There is a delay between when the file has been created, and when 

the it appears in CVMFS.
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Stash -> CVMFS Delay
• In 1 hour, the files are largely available
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Performance - Small Files
• CVMFS caching is roughly equal to that of using StashCache
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Performance - Larger Files
• CVMFS caching is roughly equal to that of using StashCache
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CVMFS + StashCache

• We finally have a global, scalable, read-only filesystem. 

• We have analogous setups for the NoVA and DES experiments. 

• Writable by all OSG VO users. 

• Access at /cvmfs/stash.osgstorage.org/.



ligo.osgstorage.org
• Problem: stash.osgstorage.org is unauthenticated access to 

public files 

• Not great for event data! 

• LIGO has very specific rules about data access and even 
namespace visibility 

• Therefore, had to develop new features in CVMFS to enable VOMS 
authentication.



Secure CVMFS
• FUSE provides CVMFS with the PID/UID/GID of 

the accessing process. 

• CVMFS uses a helper process to, in turn, 
acquire an appropriate credential from the 
accessing process. 

• Currently, this is an X509 proxy. 

• Helper process also enforces authorization to 
the repository. 

• The proxy is returned to the CVMFS process 
and used to secure the HTTPS connection.

Kernel Userspace

User process
PID 1234/cvmfs/foo/...

/dev/fuse CVMFS Process

CVMFS auth 
helper/proc/1234/environ

open(...)

open(PID 1234,
User ABC,

/foo/...

open(...)



Secure CVMFS
• The HTTPS server must secure access to the data catalog (we use 

mod_gridsite). 

• Alternately, decide that the filenames are not proprietary and just use 
HTTP. 

• The data federation is responsible for authenticating and authorizing the 
HTTPS connections from the CVMFS process. 

• Anywhere HTTPS is used, caching is not possible in general. 

• Obviously, the root user can always see the parts of the namespace and the 
files in the worker node cache.



The Long Road Ahead
• The osgstorage.org repositories provide a POSIX 

filesystem: there’s a long road to making it look like EXT3! 

• The “global transaction” approach may fit poorly with 
some experiments.  Looking to add the ability for a 
remote host to update a subset of the directory tree. 

• Still fits poorly with handling intermediate outputs of 
workflows.  Everything needs to go faster! 

• Linux-kernel-side work needed for unprivileged 
mounting of FUSE.  

• Take advantage of storage resources at sites: more 
intelligent site-level caching is needed.
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Question? 
Comments? 
Heckling?


