
CVMFS for Data Federations
Brian Bockelman

University of Nebraska - Lincoln

Problems with Xrootd-based Data Federations
• No directory listings: more like GET/

PUT.

• Foreign command line tools: xrdcp
(or stashcp), not cp.

• They are difficult to setup for
opportunistic VO’s; OSG has already
created one StashCache.

• USERS WANT POSIX!

OSG Data
Federation

OSG-XD
Source

OSG-Connect
Source

IF
Source

GLOW
Source

OSG
Redirector

Caching
Proxy

Caching
Proxy

Caching
Proxy

Caching
Proxy

Job
Job

Job

Download
Redirect

Discovery

File service -> File system
• Users, in short, want to turn the global, read-only file service into a

global, read-only filesystem.

• Further, we want one safe to mount on 100,000 hosts where users
may do profoundly dumb things on the namespace (“The ls -
lhR Problem”).

• Well, this sounds familiar: CVMFS.

Can we use CVMFS to serve the POSIX interface and our data
federations to serve the data?

Times They are A Changin’
• Xrootd data federation: the CVMFS FUSE process speaks HTTP. Our federation must export this

protocol => Use Xrootd’s HTTP(S) support.

• CVMFS:

• Client must follow HTTP-based redirects.

• We cannot change, alter, or rename the files inside the federation for CVMFS.

• Files in the data federation are saved by the logical file name and uncompressed.

• CVMFS wants files saved by their content address (e.g., SHA-1 hash) and compressed.

• CVMFS catalogs now have new file attributes that denote compression type (compressed /
uncompressed) and storage type (file name / content address).

• We need a mechanism to publish files without downloading them to the repository server.

Repositories
• We have a series of 4 repositories we maintain:

• nova.osgstorage.org - Repo from XrootD data source at FNAL

• stash.osgstorage.org - Repo built from user accessible storage
at OSG-Connect

• cms.osgstorage.org - Repo of the CMS data federation

• ligo.osgstorage.org - Repo of LIGO data stored at Nebraska

Repositories
• Let’s take a closer look at two of these:

• nova.osgstorage.org - Repo from XrootD data source at FNAL

• stash.osgstorage.org - Repo built from user accessible storage
at OSG-Connect

• cms.osgstorage.org - Repo of the CMS data federation

• ligo.osgstorage.org - Repo of LIGO data stored at Nebraska

stash.osgstorage.org
• Goal: publish the “Stash” filesystem at UChicago, exposed via the

StashCache data federation, into CVMFS:

1. A periodic job scans the Stash filesystem at UChicago, recording
differences since last scan.

• This looks at the world-readable contents of /stash/$USER/public.

2. Job puts records files’ metadata (size, checksum) into the CVMFS
repository server. Data stays on Stash.

3. CVMFS repository is published with new contents.

StashCache
• Managing data opportunistically at

storage elements requires a CMS-
or ATLAS-sized commitment.

• StashCache uses distributed
caches across the country.

• Data origin is the Stash service on
OSG-Connect.

• Users write data into Stash, and
read the data from jobs through
StashCache

stashcache.github.io

http://stashcache.github.io

Standard Site

Worker Node
CVMFS

Worker Node
CVMFS

StashCache

StashCache
Server

StashCache
Server

StashCache
Server

HTTPHTTP

StashCache Federation

CVMFS
Repository

Server

StashCache
Redirector

Stash Origin Site

Metadata

Actual Data
Files (XrootD)

XrootD

Overview of CVMFS and StashCache
• Regular XrootD StashCache Federation

• CVMFS contacts the caching servers
over HTTP

• Caching servers contact the federation
for the data.

• Note the caching layer protects the
origin server from load: very different
from the CMS AAA model.

• Worker nodes pull data from the
caching servers.

Uses
• Large datasets which cannot be cached within the existing Squid-

based caching infrastructure (tuned for working set size of 10GB):

• Full Blast DB’s

• Nova Flux Files…

• Targeting working set sizes* from 10GB to 10TB. Will work fine for
smaller sizes, but OASIS may be more efficient for software
distribution.

*Number of unique bytes touched by a workflow

User Perspective

• Copies data onto OSG-Connect using scp, Globus Online - pick
your favorite.

• Put data into /stash/<user>/public

• Wait for a while for the data to be published (~1 hr)

• Use data on the worker nodes!

Stash -> CVMFS Delay
• There is a delay between when the file has been created, and when

the it appears in CVMFS.

0%

25%

50%

75%

100%

0.0 0.5 1.0 1.5 2.0 2.5
Delay in Hours

Pr
ob

ab
ilit

y
of

 F
ile

 E
xi

st
an

ce
Cumulative Distribution of the CVMFS Publish Delay

Stash -> CVMFS Delay
• In 1 hour, the files are largely available

0%

25%

50%

75%

100%

0.0 0.5 1.0 1.5 2.0 2.5
Delay in Hours

Pr
ob

ab
ilit

y
of

 F
ile

 E
xi

st
an

ce

Cumulative Distribution of the CVMFS Publish Delay

Still opportunity to squeeze this further!

1 hour

90% of updates

Performance - Small Files
• CVMFS caching is roughly equal to that of using StashCache

0

1

2

3

4

5

1kb 100kb 1mb 10mb 100mb
File Size

M
ea

n
Tr

an
sf

er
 T

im
e

(s
)

Method

cached

cvmfs

direct

Small File Transfers

?

Performance - Larger Files
• CVMFS caching is roughly equal to that of using StashCache

0

100

200

300

400

500

1000mb 10000mb
File Size

M
ea

n
Tr

an
sf

er
 T

im
e

(s
)

Method

cached

cvmfs

direct

Large File Transfers

100MB/s

Lower 
is 

better

10MB/s

CVMFS + StashCache

• We finally have a global, scalable, read-only filesystem.

• We have analogous setups for the NoVA and DES experiments.

• Writable by all OSG VO users.

• Access at /cvmfs/stash.osgstorage.org/.

ligo.osgstorage.org
• Problem: stash.osgstorage.org is unauthenticated access to

public files

• Not great for event data!

• LIGO has very specific rules about data access and even
namespace visibility

• Therefore, had to develop new features in CVMFS to enable VOMS
authentication.

Secure CVMFS
• FUSE provides CVMFS with the PID/UID/GID of

the accessing process.

• CVMFS uses a helper process to, in turn,
acquire an appropriate credential from the
accessing process.

• Currently, this is an X509 proxy.

• Helper process also enforces authorization to
the repository.

• The proxy is returned to the CVMFS process
and used to secure the HTTPS connection.

Kernel Userspace

User process
PID 1234/cvmfs/foo/...

/dev/fuse CVMFS Process

CVMFS auth
helper/proc/1234/environ

open(...)

open(PID 1234,
User ABC,

/foo/...

open(...)

Secure CVMFS
• The HTTPS server must secure access to the data catalog (we use

mod_gridsite).

• Alternately, decide that the filenames are not proprietary and just use
HTTP.

• The data federation is responsible for authenticating and authorizing the
HTTPS connections from the CVMFS process.

• Anywhere HTTPS is used, caching is not possible in general.

• Obviously, the root user can always see the parts of the namespace and the
files in the worker node cache.

The Long Road Ahead
• The osgstorage.org repositories provide a POSIX

filesystem: there’s a long road to making it look like EXT3!

• The “global transaction” approach may fit poorly with
some experiments. Looking to add the ability for a
remote host to update a subset of the directory tree.

• Still fits poorly with handling intermediate outputs of
workflows. Everything needs to go faster!

• Linux-kernel-side work needed for unprivileged
mounting of FUSE.

• Take advantage of storage resources at sites: more
intelligent site-level caching is needed.

StashCache

StashCache
server

StashCache
(proxying cache

server)
StashCache

server

Standard Site
Worker Node
(cache open

chunks)

Worker Node
(cache open

chunks)

HTTP HTTP

Ceph (object store),
S3,

POSIX filesystem

Cache miss

Question? 
Comments? 
Heckling?

