
XrootdFS	
A	Posix	File	system	for	XrootD	

	

Abstract	
	 When	 we	 first	 introduced	 XRootD	 storage	 system	 to	 the	 LHC,	 we	 needed	 a	
filesystem	 interface	 so	 that	 XRootD	 system	 could	 funcAon	 as	 a	 Grid	 Storage	
Element.	The	result	was	XRootDfs,	a	FUSE	based	mountable	posix	filesystem.	 It	
glues	all	the	data	servers	in	a	XRootD	storage	system	together	and	presents	it	as	
a	 single,	 posix	 compliant,	 mulA-user	 networked	 filesystem.	 XRootD's	 unique	
redirecAon	mechanism	requires	special	handling	of	IO	operaAons	and	metadata	
operaAons	 in	 the	 XRootDfs.	 This	 includes	 a	 throQling	mechanism	 to	 gracefully	
handle	extreme	metadata	operaAons;	handling	of	returned	results	from	all	data	
servers	 in	 a	 consistent	 way;	 hiding	 delays	 of	 metadata	 operaAons,	 including	
storage	media	latency;	enhancing	the	performance	of	concurrent	IO	by	mulAple		
applicaAons;	and	using	an	advanced	security	plugin	to	ensure	secure	data	access	
in	 a	 mulA-user	 environment.	 Over	 the	 last	 several	 years	 XRootDfs	 have	 been	
adopted	by	many	XRootD	sites	 for	data	management	as	well	as	data	access	by	
applicaAons	 that	 were	 not	 specifically	 designed	 to	 use	 the	 naAve	 XRootD	
interface.	Many	of	the	technical	methods	menAoned	above	can	also	be	used	to	
glue	 together	 other	 types	 (i.e.	 non-XRootD)	 data	 servers	 to	 provide	 seamless	
data	access.	

	
Use	Xrootd	Storage	as	a	Single	Posix	File	System	
		
•  Glue	a	distributed	Xrootd	storage	together	
•  MulA-user	networked	filesystem	
•  Posix	compliant:	
•  Run	unix	commands:	cd,	ls,	cp,	cat,	mv,	rm,	mkdir,	

find	…	
•  ApplicaAons	that	work	on	posix	filesystem:	scp/sYp,	

bbcp,	GridFTP,	Bestman	SRM	…	
•  Or	posix	IO	funcAons	in	your	applicaAon:	stat(),	

open(),	close(),	read(),	write(),	unlink(),	etc.	
	



Overview	of	Xrootd	as	a	cluster	of	storage	

As	a	distributed	storage	system,	machines	in	a	cluster	of	Xrootd	are	divided	into	
two	roles:	a	redirector	and	a	number	of	data	servers	in	a	tree	structure:	

Redirector	
xrootd,	cmsd	

data	server	
data	server	

data	server	
data	server	data	server	
xrootd,	cmsd	

The	redirector	is	the	user	facing	entrance	point	of	the	xrootd	storage	cluster.	The	
data	servers	hold	data.		Each	machines	run	two	daemons:	xrootd	and	cmsd.	The	
cmsd	daemons	are	internal	to	the	xrootd	cluster.	They	are	responsible	for	forming	
the	cluster,	and	help	the	redirector	to	locate	files	on	data	servers.	The	xrootd	
daemon	on	the	redirector	responds	to	users	request	by	first	locaAng	the	file	using	
the	cmsd	network,	and	then	send	the	user	to	the	corresponding	data	server’s	
xrootd	daemon	for	the	actual	data	operaAon.	The	redirector	caches	the	file	locaAon	
informaAon	to	improve	the	efficiency.	Each	data	server	can	itself	be	a	cluster	of	
xrootd	with	its	own	redirector	and	data	servers.		This	allow	us	to	build	a	hierarchy	
of	xrootd	clusters,	which	is	especially	useful	for	storage	federaAon	over	difference	
domains	and	wide	area	network.	
	
For	users,	aYer	they	contact	to	redirector,	they	are	sent	(in	xrootd	terminology,	
redirected)	to	a	specific	data	server	to	access	files	(including	creaAng	new	files).	
This	happens	without	having	to	ask	users	to	do	anything	extra.	From	the	users	point	
of	view,	this	operaAon	is	similar	an	Object	Store,	except	that	in	addiAon	to	just	
simple	GET/PUT,	xrootd	file	access	also	supports	random	IO	–	those	seen	in	the	
Posix	IO	funcAons.	
	
While	low	overhead,	this	architecture	(including	the	Object	Stores)	doesn’t	provide	
a	tradiAonal	Posix	filesystem	to	the	users.	A	special	set	of	tools	is	needed	for	users	
to	check	their	file	status	and	get	an	overview	of	the	storage.	

user	



XrootdFS	as	a	Posix	filesystem	for	Xrootd	
storage	cluster	

XrootdFS	provides	a	posix	filesystem	to	the	xrootd	cluster.	It	is	mounted	under	the	
Unix	filesystem	tree	and	supports	posix	IO	operaAons.	ApplicaAons	that	are	
developed	to	access	data	via	the	posix	IO	funcAon	will	be	able	to	funcAon	on	top	of	
it,	and	regard	the	xrootd	storage	cluster	as	yet	another	filesystem.	
	
XrootdFS	is	developed	using	the	FUSE	(Filesystem	in	User	Space)	framework.	It	is	a	
non-privileged	daemon	running	on	a	unix	machine,	and	itself	is	a	xrootd	client.	It	
understands	the	structure	of	a	xrootd,	including	mulAple	layers	in	the	tree	
structure.	XrootdFS	interacAon	with	user	requests	goes	through	the	FUSE	kernel	
module.	It	turns	users	posix	IO	operaAons,	including	both	data	and	metadata	
operaAon	to	xrootd	Posix	IO	operaAons.		
	
	
	
	
	
	
	
	
	
	
XrootdFS	follows	the	FUSE	framework	but	itself	includes	addiAonal	funcAons	in	
order	to	work	well	with	the	Xrootd	storage	cluster.		Those	funcAons	falls	into	three	
categories:	data	IO	funcAons,	metadata	IO	funcAons,	query	and	control	funcAons.		
	
The	XrootdFS	implementaAon	not	only	need	to	translate	posix	IO	operaAons	to	the	
Xrootd	IO	operaAons,	itself	also	needs	to	smooth	out	the	difference	between	how	a	
posix	file	systems	behave	(delay,	error	message,	hardware	failure)	and	how	a	
storage	cluster	such	as	xrootd	behave.	

ApplicaAons	

Kernel	/	FUSE	module	

XrootdFS	
xrootd	storage	

cluster	

Posix	IO	funcAons	calls:	open(),	read(),	write(),		stat(),	readdir(),	etc.	

via	/dev/fuse	

Implement:	FUSE	funcAons:	xrootdfs_open,	xrootdfs_read,	xrootdfs_readdir	
																						Internal	cache,	buffer,	queue,	etc.	



ImplementaAon:	three	categories	of	
funcAons	

The	three	categories	of	funcAons	include	FUSE	funcAons,	and	affiliated	funcAons	to	
improve	performance/enhance	users	experience.	FUSE	funcAons	are	similar	to	
POSIX	IO	funcAons	in	Linux	kernel	(which	is	similar	but	not	idenAcal	to	the	POSIX	
funcAons	available	to	the	users).	In	most	cases	there	is	a	one-to-one	mapping	
between	the	two	sets	but	not	always.	ApplicaAons	developed	using	FUSE	are	
responsible	to	tailor	the	implement	of	the	FUSE	funcAons	according	to	the	storage	
systems.	Parameters	passed	to	those	FUSE	funcAons	are	FUSE	data	structures,	not	
those	data	structures	in	“stdio.h”.	Most	FUSE	funcAons	we	need	to	implement	
starts	with	prefix	xrootdfs_,	such	as	xrootdfs_open().	We	will	simply	refer	they	as	
_open()	here.	
	
XrootdFS	data	IO	funcAons	includes	_mknod()	(equivalent	of	posix	creat()),		
_open(),	_read(),	_write(),	_release()	(similar	to	posix	close()),	_truncate()/
_Yruncate(),	_seek(),	etc.	File	descriptor	used	in	these	funcAons	are	internal	to	the	
XrootdFS	daemon.	They	don’t	corespond	to	the	file	descriptor	returned	by	Linux	
kernel	to	applicaAon;	The	_release()	funcAon	is	supposed	to	close	the	file,	but	it	
immediately	returns	and	the	actual	xrootd	file	closing	happens	asynchrony,	oYer	
with	very	short	delay;	UnAl	very	recent	combinaAon	of	Linux	kernel	and	FUSE	
releases,	the	linux	kernel	breaks	large	write	reuqests	into	4KB	blocks.	This	has	a	
noAceable	negaAve	impact	to	the	performance	of	large	sequenAal	writes.	To	
compensate	this	behavior,	a	128KB	cache	is	used	to	capture	sequenAal	writes;	A	
user	may	open	a	file	and	leave	it	idle	for	a	long	Ame.	The	Xrootd	client	library	used	
by	the	XrootdFS	will	close	the	corresponding	xrootd	file	and	network	connecAon.	
When	the	user	become	acAve	on	this	file	again,	the	xrootd	file	will	be	opened	
again,	transparent	to	both	the	user	and	XrootdFS	daemon.	
	
Metadata	IO	funcAons	includes	_readdir(),	_getxaQr(),		_unlink(),	_rename(),	etc.	
One	of	the	important	requirement	in	these	funcAons	is	to	be	able	to	put	together	
informaAon	scaQed	on	the	data	servers.	As	the	funcAon	that	maps	to	those	in	Linux	
kernel	readdir(),	_readdir()	includes	steps	to	find	the	corresponding	directory	on	
the	data	servers,	get	dir_entry	from	all	of	them,	merge	and	remove	redundant	ones	
and	return	to	the	user.	It	also	needs	to	merge	the	error	from	all	data	servers	



and	return	a	reasonable	error_no	to	the	user.	The	merged	dir_entry’s	are	saved	in	a	
cache	with	an	expiraAon	Ame	for	later	use.	
	
The	_getxaQr()	funcAon	is	essenAally	a	stat()	funcAon.	While	not	need	to	piece	
together	file/directory	info	from	all	data	servers,	it	needs	to	deal	with	the	xrootd	
file	locate	delay	–	xrootd	redirector	uses	real	Ame	query/respond	mechanism	to	
locate	a	file.	A	data	server	will	immediately	respond	to	xrootd	redirector’s	file	
locate	query	if	it	has	the	file.	If	the	file	doesn’t	exist	in	the	xrootd	cluster,	no	data	
server	will	respond.	AYer	a	period	(default	5	seconds),	the	xrootd	redirector	will	
Ameout	and	respond	to	the	user	with	a	file	not	exist	message.	This	mechanism	has		
been	proved	to	be	very	scalable.	But	in	many	cases,	XrootdFS	needs	to	hide	this	
delay.	For	example,	if	user	“cd”	to	a	directory	in	XrootdFS	and	run	an	applicaAon,	
the	OS	may	first	search	the	current	directory	for	libxyz.so	before	it	searchs	/usr/
lib64.	Giving	the	a	applicaAon	may	involves	many	shared	libraries,	a	5	second	
waiAng	will	delay	the	execuAon	of	the	applicaAon	by	minutes.	To	hide	this	delay,	
XrootdFS	contact	each	and	every	data	server	and	ask	for	a	stat().	This	brutal	force	
approach	is	obviously	costly	–	just	imagine	user	does	a	“ls	–l	directory”	or	a	“find	/
directory”.		Luckily,	a	user	“ls	–l	directory”	involves	a	_readdir()	first,	followed	by	
_getxaQr()	on	each	and	every	dir_entry	retuned	by	_readdir().	Since	_readdir()	
already	saved	the	dir_entry	to	a	cache,	we	just	need	_getxaQr()	to	check	the	cache.	
If	the	cache	has	the	dir_entry,	then	we	can	use	the	default	Xrootd	file	locate	
mechanism	instead	of	the	brutal	force	mechanism.		
	
_rename()	and	_unlink()	(correspond	to	the	Unix	“mv”	and	“rm”/”rmdir”)	are	two	
other	examples	that	we	use	brutal	force	in	order	to	guarantee	consistent	results	
accross	all	data	servers.	We	also	use	brutal	force	mechanism	for	_statvfs()	(unix	
“df”),	given	that	its	usage	is	not	as	oYen	as	other	commands.	
	
Metadata	operaAons,	especially	those	that	require	brutal	force	mechanism,	can	
impose	high	level	of	random	IO	to	the	data	servers,	which	negaAvely	impact	their	
performance	in	serving	data.	Also	in	a	busy	client	machine	with	mulAple	users	using	
XrootdFS,	FUSE	will	create	a	thread	for	each	and	every	metadata	operaAon,	
significantly	increase	the	number	of	threads	and	memory	usage	of	the	XrootdFS.	
For	these	reasons,	we	need	to	put	a	limit	on	how	many	concurrent	metadata	
operaAon	a	XrootdFS	can	perform	against	all	data	servers.		



XrootdFS	implement	a	FIFO	queue	for	internal	usage.	Tasks	such	as	readdir(),	stat(),	
unlink(),	rename()	(these	are	all	xrootd	IO	funcAons	resulted	in	the	above	brutal	
force	mechanism)	are	appended	to	the	tail	of	this	queue	by	the	corresponding	
caller	funcAon	_readdir(),	_getxaQr(),	_unlink(),	_rename(),	etc.	A	number	of	task	
workers	will	pickup	tasks	from	the	head	of	the	queue.	When	a	task	is	completed,	
the	worker	send	a	condiAon	signal	so	that	the	caller	will	pickup	the	result	and	
conAnue.	Error	condiAon	is	included	in	the	returned	results.	
	
The	brutal	force	mechanism	provides	us	a	way	to	detect	abnormal	behavior	of	the	
xrootd	cluster.	For	example,	if	a	data	server	is	offline,	all	metadata	operaAons	
against	the	data	server	will	hang.	This	is	oYen	the	desired	behavior	because	this	tell	
XrootdFS	users	and	administrators	that	the	systems	is	in	trouble	and	needs	care.	
The	alternaAve,	which	allows	XrootdFS	or	other	xrootd	client	to	conAnue,	oYen	
result	in	(in)consistency	issues	that	can	lead	to	long	invesAgaAon	and	manual	fixing.	
	
Query	and	Control	allows	us	to	access	a	running	XrootdFS	and	control	some	of	its	
behavior.	This	is	done	via	FUSE’s	extended	aQributes	interface.	A	user	can	use	Unix	
command	“gemaQr”	against	a	mounted	XrootdFS	filesystem.	The	following	
extended	aQributes	are	available	for	query:	
1.  “xrootdfs.fs.workers”:	retune	the	number	of	task	workers.	The	default	is	4.	
2.  “xrootdfs.fs.dataserverlist”:	returns	a	list	of	data	servers	currently	known	to	

the	XrootdFS.	
3.  “xrootdfs.file.permission”:	retune	the	access	permission	of	the	querying	user.	
Privileged	users	(such	as	root)	can	also	use	Unix	“semaQr”	command	to	add	or	
remove	task	workers	-	if	the	number	of	task	workers	is	set	to	zero,	metadata	
operaAons	will	freeze	unAl	a	worker	is	added.	Privileged	users	can	also	use	
“semaQr”	to	ask	XrootdFS	to	refresh	the	internal	list	of	data	servers.	Though	this	
can	also	be	done	by	sending	a	unix	signal	“USR2”	to	the	XrootdFS	daemon.	
	
FUSE	opAons	are	also	available	to	XrootdFS	when	it	starts.	XrootdFS	set	a	number	
of	default	values	to	FUSE	opAons	such	as	diraQr_Ame?,	fileaQr_Ame?	
NegaAve_aQr_Ame?	Other	FUSE	opAons	such	as	“big_writes”	and	“direct_io”	can	
also	be	set	to	prevent	kernel	from	breaking	large	sequenAal	write	to	4KB	writes,	
and	bypass	operaAng	system	page	cache	for	IO.	XrootdFS	itself	have	a	few	opAons	
which	can	be	found	in	the	its	man	page	or	by	just	typing	XrootdFS	with	no	
argument.	



XrootdFS	IO	performance	

Performance	measurement	environment:	
1.  SLAC	ATLAS	Tier	2	Xrootd	storage:	13	data	servers,	each	of	them	1x	10Gbps	

NIC.	100-180	HDDs	in	groups	of	raid	6.	
2.  Client/XrootdFS,	8-core,	48GB,	10Gbps	NIC	

SequenAal	IO	performance:	
	
	
	
	
	
	
	
	
	
	
	
	
Metadata	operaAons	performance	depend:	
1.  more	on	the	number	of	data	servers	and	their	performance	
2.  Less	on	XrootdFS	and	FUSE	overhead.	
3.  At	SLAC	Tier	2,	deleAon	rate	via	XrootdFS	is	~25Hz	



SLAC	Tier	2	GridFTP	accesses	Xrootd	storage	via	XrootdFS	
	
	
	
	
	
	
	
	
	
	
	
	

How	to	use	
	

It	is	documented	in	“man	xrootdfs”.	Examples:	
•  run	from	command	line	with	debugging	output															

xrootdfs -d -o rdr=root://rdr:port//data,uid=daemon /mnt 

•  use	with	autofs	
add	a	line	to	/etc/auto.master														
/- /etc/auto.fuse 

create	/etc/auto.fuse	with	the	following	one	line															
/mnt -fstype=fuse,uid=2,rdr=root://rdr\:port//data :xrootdfs.sh 

create	script	/usr/bin/xrootdfs.sh	(and	set	the	+x	bit)												
#!/bin/sh 
exec /usr/bin/xrootdfs $@ >/dev/null 2>&1 



Security	

XrootdFS	can	use	any	xrootd	security	plugins,	for	example,	“unix”,	“gsi”,	“sss”,	
none.	“unix”	security	plugin	pass	the	username	(not	uid)	of	the	user	that	runs	the	
XrootdFS	instance	to	the	Xrootd	cluster.	This	means	everyone	using	that	parAcular	
XrootdFS	mount	point	as	treated	the	same	by	the	Xrootd	cluster.	This	is	OK	for	a	
single	user	environment	or	a	small	group	of	users.	Similar	issue	exists	in	using		“gsi”	
security	plugin	with	XrootdFS.	
	
“sss”	allows	XrootdFS	to	pass	the	actual	usernames	(not	uid)	to	the	xrootd	server,	
making	it	a	true	mult-user	environment.	“sss’	setup	requires	data	servers	and	
XrootdFS	instances	to	share	a	predefined	“sss”	key.	This	means	the	servers	must	
trust	the	XrootdFS.	
	

Other	features	and	limitaAons	
	

•  Support	Composite	Name	Space	(CNS)	–	rarely	used	
–  CNS	hosts	the	complete	file	system	metadata	info,	it	is	an	auxiliary	xrootd	
server	that	is	not	part	of	the	cluster.	

–  Provide	an	overview	of	the	Xrootd	storage	including	tapes	

•  Do	not	support	things	unavailable	in	Xrootd	
–  changing	mAme,	aAme,	etc.	
–  file	locking	
–  File	ownership	–	Xrootd	supports	ACL	only	

	


