

Storage

- All types of storage are distributed (depends on the scale of distribution: among disk drives, servers in Data Center, or amongst Data Centers (large RTT => 5 msec).
- Several of storage systems for science are proposed and many running.
- Commercial companies suggest distributed data storage solutions: Google (Mesa: GeoReplicated, Near RealTime, Scalable Data Warehousing), Dropbox, Box, Adrive, Amazon, DDN Storage, ...
- Which are appropriate solutions for globally distributed data storage in scientific research and education?
 - Obviously we need for software defined solutions.

Oct 2016

Technical details of GDSDS

- Important features:
 - Data storing and Data transfer
 - Reliability: data replication, erasure coding.
 - Reduce the volume: Data compression.
 - Security: Data encryption, ACL.
 - GDSDS Web portal and GDSDS CLI.
 - Network architecture.
 - Caching, Tiering.
 - Automatic storage deployment by user request.

Oct 2016

Similar (in some aspects) developments

- Project OsiRIS at University of Michigan https://indico.cern.ch/event/466991/contributions/1143627/
- http://eos.cern.ch
- Owncloud.org

Oct 2016

Some details

- It is supposed that command create Storage Instance might be issued by the user from the SGSDS portal. It is not often required operation.
 - In result the user has to receive all information about operation completion code and information how to use created Storage Instance.
- It is planned for each operation create to create new Instance of storage cluster. Separate Instances are completely independent each other.

Oct 2016

Allocation of instances of Virtual Storage

Scientific sources of Big Data

- Scientific experimental installations
 - http://www.iter.org International Thermonuclear Experimental Reactor (coming)
 - ~1 PB/year
 - http://www.lsst.org Large Synoptic Survey Telescope
 - ~10 PB/year
 - http://www.cern.ch CERN, http://www.fair-center.eu FAIR,
 - http://www.cta-observatory.org CTA The Cherenkov Telescope Array
 - ~20+ PB/year (each site)
 - https://www.skatelescope.org/
 Square Kilometre Array ~300-1500 PB/year
 - Many other aspects of big data: https://www.nist.gov/el/cyber-physical-systems/big-data-pwg
- · Marginal remark: total volume of data in the World grows two times an year, i.e. around 75% of data were written last two years.

Oct 2016

Main features of SDS

Software Defined Storage should include:

- Automation Simplified management that reduces the cost of maintaining the storage Infrastructure.
- Standard Interfaces APIs for the management, provisioning and maintenance of storage devices and services.
- •Virtualized Data Path Block, File and Object interfaces that support applications written to these interfaces.
- Scalability Seamless ability to scale the storage infrastructure without disruption to availability or performance.

Network aspects on GDSDS

- First of all we have to keep in mind the CAP theorem:
 - Theoretically NOT possible to guarantee all below requirements at the same time.
 - Consistency
 - Availability
 - Partitioning

Oct 2016

Basic assumptions on GDSDS

It is assumed

Oct 2016

- GDSDS consists of several groups of storage servers located in geographically different regions.
- · Groups of servers are connected by a number of parallel virtual data links.
 - Data links might have different features: speed, price, encryption type (including quantum encryption), etc.
- · Data links are to be configured with SDN.
- · Client can ask to perform a number of operations:
 - Create, Upgrade, Downgrade, Delete, Replicate, Migrate, etc an instance of Virtual Storage allocated on GDSDS. The instance might be created with different SLA
- Write/Read data to/from the instance of Virtual Storage.

Oct 2016

Examples for SLA

- Specific type of Data Encryption.
- Specific type of Data Compression.
- On one specific Data Center (DC) or on many DCs with specific types of Data Links.
- Type of backend: CEPH, SWIFT, EOS, etc.

Oct 2016

References

- •Jakob Blomer // Survey of distributed file system technology // ACAT 2014, Prague (in references) Also iopscience.iop.org/article/10.1088/1742-6596/664/4/042004/pdf
- Why so Sirius? Ceph backed storage at the RAL Tier-1.
 - https://indico.cem.ch/event/466991/contributions/2136880/contribution.pdf
- Analysis of Six Distributed File Systems HAL-Inria -
- https://hal.inria.fr/hal-00789086/file/a_survey_of_dfs.pdf
- XtreemFS is a fault-tolerant distributed file system for all storage needs

https://en.wikipedia.org/wiki/Comparison_of_distributed_file_systems

- http://www.xtreemfs.org/
- Software Defined Storage LizardFS is a distributed, scalable, fault-tolerant and highly available file system - https://lizardfs.com/about-lizardfs/

15

Oct 2016