Geographically Distributed Software Defined Storage (proposa)

Sergey Khoruzhnikov, Vladimir Grudinin, Oleg Sadow, Andrey Shevel
Arsen Kairkanov, Oleg Lazo, Anatoly Greshkin

22nd International Conference on Computing in High Energy and Nuclear Physics, hosted by SLAC and LBNL, Fall 2016
Presenter: Andrey Y Shevel

1 ITMO University, S.Petersburg (Russia)
2 National Research Centre “Kurchatov Institute” PETERSBURG NUCLEAR PHYSICS INSTITUTE

Storage
- All types of storage are distributed, depends on the scale of distribution:
 - among disk drives, servers in Data Center, or among Data Centers (large 1000+ to 5+ terabytes).
- Several storage systems for science are proposed and many running.
- Commercial companies suggest distributed data storage solutions: Google (Kaos Distributed, Large Scale Data Reduction), Dropbox, Amazon, Microsoft, Google, Azure, Amazon, DSN Storage.
- Which is appropriate solutions for globally distributed data storage in scientific research and education?
 - Obviously we need for software-defined solutions.

Main features of SDS
- Software Defined Storage should include:
 - Automation - Simplified management that reduces the cost of maintaining the storage infrastructure.
 - Standard Interfaces - APIs for the management, provisioning and maintenance of storage devices and services.
 - Unrestricted Data Path - Block, File and Object interfaces that support applications written to these interfaces.
 - Scalability - Seamless ability to scale the storage infrastructure without disruption or availability or performance.

National Grid Storage Development Solutions (NGBDS)

Some details
- It is supposed that command create Storage Instance might be issued by the user from the GDSDS portal. It is not often required operation.
 - In result the user has to receive all information about operation completion code and information how to use created Storage instance.
 - It is planned for each operation create to create new instance of storage cluster. Separate instances are completely independent each other.

Examples for SLA
- Specific type of Data Encryption.
- Specific type of Data Compression.
- On one specific Data Center (DC) or on many DCs with specific types of Data Links.
- Type of bandwidth: 10GB, 100GB, EDS, etc.

Development process consideration
- During implementation GDSDS the project working repository is strongly required. Any update and/or installation must be done only with this working repository.
- Updating the working repository is separate specific activity.
- Several existing SSD systems might be considered as backend: SWIFT, EDS, commercial instances as well.
 - CEPH is under testing now as backend for the proposal.
- Teach implementation with cluster (under intensive testing now).

Who are developers
- We (volunteers from PNNL and ITMO) are proposing the project as open source development.
- It is supposed that any person with interest to such the topic could take participation:
 - Researchers, students.
 - Yes, we are looking for support.

References
- "Why so Slick? Ceph backed storage at the RAL, Talk 1" - (http://datastorage.org/…/ACAT_2014.pdf)
- "Xstore" - a fault-tolerant distributed file system for storage needs. (http://www.xstore.org/)
- "Software Defined Storage Layer2X is a distributed, scalable, fault-tolerant and highly available file system. - https://www.xstore.org/