

Global EOS: exploring the 300-ms-latency region

Luca Mascetti CERN/IT-Storage

Global EOS: World-Wide Deployment

Data replication in storage pools

```
/eos
/asia
      /taiwan
/australia
      /melbourne
/europe
      /geneva
      /budapest
/dualcopy
      /gva-bud
      /mel-gva
      /mel-bud
/triplecopy
      /mel-gva-bud
      /mel-gva-tpe
```


Network Topology

- Streaming performance good
 - possible problems in case of packet drops (tcp window)
 - tcp settings could be optimised
- Later
- Latency in read hidden by the read-only NS
 - Latency in write to contact the read-write NS

Summary

- EOS provides a very flexible storage platform for a large community
 - integrated in Tier-0 workflow by ATLAS & CMS
 - more than 6k users storing data today
- Demonstrated unprecedented scalability
 - largest low-cost HEP storage installation site today (~200 PB and 50k disks)
- EOS confirm its capability in handling multiple sites even with very high latencies.
- Performance using native clients were mainly dictated by the connectivity status of the sites.
- Authentication (for read or for write) affected by the latency to contact the closer namespace.
- Strategic direction for CERN based disk storage
 - for physics data (user/group/grid)
 - 'new-style' synchronise home directory via CERNBox

