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The Experiment

- Compressed Baryonic Matter: a
heavy-ion experiment at the future
facility FAIR in Darmstadt

e  Fixed-target operation on extracted
beams, 2 — 45 GeV/nucleon

RICH

Dipole magnet +
Silicon Tracking System

*  Spectrometer: silicon tracking
system in a dipole magnetic field

Hadron, lepton and photon ID:
RICH, Muon System, TRD, TOF, ECAL

. Observables: yields, spectra, flow,
correlations, fluctuations of bulk
hadrons, multi-strange hyperons,
open charm and charmonium; low-
mass di-leptons

. First beam in 2022

Muon System
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electron + hadron setup

—
N
I
=
]
8]
©
14
c
o
=
5]
©
i
(7]
2
1=

HADES

10* h— NICAMPD

STAR BESII

BM@N NABO+

10
Collision Energy (|s,,) [GeV]

Volker Friese

Characteristics

e Versatility: exchange or replace detector systems
according to physics aim (e.g. electrons / muons)
or conditions (beam energy)

muon setup

Complexity: up to 600 charged tracks
per collision in the acceptance

e Capability: up to 107 collisions per second
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The Rate Problem

CBM targets at extremely rare probes, which
necessitates very high interaction rates
(design rate 10 MHz).

That entails a raw data rate of up to 1 TB/s.

To be reduced online to a storage rate of several GB/s.

Trigger signatures are mostly complex (e.g. weak
cascade decays) and cannot be realized in hardware.

Readout concept:

— No hardwaretrigger

— Self-triggered front-end electronics deliver time-stamped data
— Data-push architecture to online compute farm

— Event reconstruction and —selection to be performed on CPU
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The bulk

The needles in the
¥ haystack

Self-triggering Front-end;
all hits shipped to DAQ.
Data push architecture
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Readout buffer outside
radiation area, many GByte
Allows LI decision times up to
100-1000 ms

/{ High-throughput network

e

First event selection
performed in processor
farm

Typical Parameters:
1% occupancy, 107 int./s
100 kHz channel hit rate
| MByte/s per channel
whole CBM: ~ | TByte/s



Online Data Flow

DPB data online event
pre-processing building and
in many uTCA crates selection

= e

W -‘:ﬁl 1 TB/s

* Dataare aggregated and pre-processed in an FPGA layer near the experiment.
* Time-slice building is performed on CPU (input nodes).

* Event reconstruction and —selection is performed in real-time on CPU (compute
nodes) in the GSI “Green Cube”.
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Consequences for Online Computing

* Reconstruction does not start from events (defined by hardware trigger)
but from ,time slices” containing many events.

— size of time slice adjusted to architecture of compute farm
— typical value: 100 MB (1000 events)

— one time sslice delivered to one compute node; avoid intercommunication between
compute nodes

— events canoverlapin time; no trivial event definition: ”4-D reconstruction”

e Allonlinealgorithms have to be extremely fast
— Trivial data-level parallelism for time slices (one time slice per node)
— Use massive parallelisation also within one node (many-core CPU/GPU/...)
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Parallelisation Within a Time Slice

RICH TRD TOF ECAL
ring finding hit finding hit finding cluster finding
+

STS

cluster finding

. MVD
hit finding

STS
hit finding

STS TRD
trackfinding trackfinding
trackfittin

Global Tracking

Vertexing, PID
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Parallelisation Within a Time Slice

TRD | TOF
hit finding hit finding

N

MVD
hit finding

STS

cluster finding

RICH
ring finding

ECAL

cluster finding

STS
trackfinding

Data Level Parallelism

Volker Friese CHEP2016;-San-Francisco;+1+October 2016



Example: CA Track Finder

CBM Au+Au 25A GeV 10 MHz STS only
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Framework and Data Model

* CBM usesthe FairRoot framework (built on ROOT)
for simulation, reconstruction and analysis.

e The datamodelisbased on the ROOT TTree.

— Different data branches: raw data (digis), clusters, hits, tracks, vertices, ...

— A “run” produces an output tree from an input tree
* Conventionally, one tree entry corresponds to one event (collision)
* We havetodeal with both time slices and events

— In simulation: convert events (Monte-Carlo) into time slices (destroy association of data
to events)

— In reconstruction: reconstruct events from time slices

e Situation when outputtree entry does not correspond toinput tree entry
not mappedin the framework
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Event Data Model

tree entry
event
I | | | |
Branch Branch Branch Branch e——
TClonesArray TClonesArray TClonesArray TClonesArray Branch Branch
TClonesArray TClonesArra TClonesArray
Digis Clusters Hits Tracks Hits Tracks /

7 — o FEvent3
g =

* No data copy when associating data to event

*  Small overhead (one pointer/index per data object)

*  Eventscan be defined based on any data level

*  Algorithms are flexible to run on entire time slice (4-d reco) or on defined events (analysis)
* ldeal case (event-by-event) described in the same format (one event per time slice)
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Outlook: Offline Computing

 Rawdatavolume per typical runtime (2 months):about5 PB
* Limitingfactor will not be computing capacity but storage costs
* Ansatz:storeonlyraw data

— For offline analysis: reconstruct on-the-fly
— Assumes fast online algorithms deliver close-to-final precision

e Storage modelis time slice with raw data, skimmed online from
“uninteresting” data

 Consequence:no formal difference of online and offline algorithms

— Use same framework

e But:nosupportofconcurrencyin the current ROOT-based framework
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Outlook: A Concurrency Framework
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* FairMQ: extension of FairRoot with a message queue-based datatransport
framework, providingasynchronousinter-process communication
— See M. Al-Turany er al., J. Phys. Conf. Ser. 513 (2014) 022001 (Proc. of CHEP 2013)

* Promises flexibility w.r.t. architecture and data model
 Willbe explored by CBM in the near future
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Summary: Computing Challenges for CBM

Huge interactionand data rates necessitate real-time event reconstruction
and data selection
— Reduce about 1 TB/s to several GB/s inreal time in software

Basis of the data modelis a time slice containing many events
Fast 4-D reconstruction algorithmsunder developments

— Many achievements, but still some way to go

Quest for a common online and offline software framework
— Concurrency needed

— Common data model allowing time-based and event-based analysis without change of
code

— Make use of the extension of the current FairRoot to FairMQ
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