
Experiments Toward a Modern Analysis Environment: Using TMVA and 

other tools in a functional world with continuous integration for 

analysisAbstract
A modern high energy physics analysis code is complex. As it has for decades, it must handle high speed data I/O, 
corrections to physics objects applied at the last minute, and multi-pass scans to calculate corrections. An analysis has 
to accommodate multi-100 GB dataset sizes, multi-variate signal/background separation techniques, larger 
collaborative teams, and reproducibility and data preservation requirements. The result is often a series of scripts and 
separate programs stitched together by hand or automated by small driver programs scattered around an analysis 
team’s working directory and disks. Worse, the code is often much harder to read and understand because most of it is 
dealing with these requirements, not with the physics. This paper describes a framework that is built around the 
functional and declarative features of the C# language and its Language Integrated Query (LINQ) extensions to declare 
an analysis. The framework uses language tools to convert the analysis into C++ and runs ROOT or PROOF as a backend 
to determine the results. This gives the analyzer the full power of an object-oriented programming language to put 
together the analysis and at the same time the speed of C++ for the analysis loop. A fluent interface has been created 
for TMVA to fit into this framework, and can be used as a model for incorporating other complex long-running 
processes into similar frameworks. A by-product of the design is the ability to cache results between runs, dramatically 
reducing the cost of adding one-more-plot. This lends the analysis to running on a continuous integration server after 
every check-in (Jenkins). To aid to data preservation a backend that accesses GRID datasets by name and transforms 
has been added as well. This paper will describe this framework in general terms along with the significant 
improvements described above.

Gordon Watts
University of Washington/Seattle

Jenkins Build Server
A build server or continuous integration server (CI) is a 
batch job manager/server.
• You give it a set of instructions to run a job.
• You tell it where in source control to find all the 

source code for the job.
• You tell it what files are important to archive and 

save at the end of a successful job.
• It will run the job, perhaps with some parameters 

you specify.
• It will save the log file, version information from 

source code used, and important output files.
• A job can be triggered by a web API or automatically 

by a check-in to source control.
• Jenkins, while powerful, is missing enterprise grade 

security and complex job workflow.

Git/SVN/etc.
• Stores all source 

code for all jobs
•Can store scripts to 

run jobs

Jenkins Build Data
Job Info
•Parameters used to 

run
•Commands Executed
• Log file of job
• Source Control Tags of 

everything run
•Date, time taken, etc.

Important Files
•All files from all 

jobs kept
• Easily accessible 

over the web with 
username

Build Job
• Run in a Virtual Machine: isolated, 

controlled environment.
• Assures results are repeatable and there is 

no hand art.
• As input can use files from other build jobs.
• Or large ROOT-tuples in a known location on 

large servers.
• Jobs can run on Linux or Windows

Web Interface

• Fire off special jobs
• Input custom parameters
•Configure jobs (change commands, etc.)
• Look at previous jobs config
• Easy access to log files
• Each access to archived files from each job
•Maintenance (prune saved job directory, 

etc.)

Uses the standard 
Jenkins web 
interface. Available 
anywhere in the 
world with a log-in. 
Shared with other 
analysis team 
members.

REST API
•Any external program can 

trigger build, retrieve log 
files and result files
•Authenticated with 

standard web security.
• Jobs run on the build server 

can fetch data files this way.

User Programs
•Access from any internet connected 

computer.
•Use the REST API to fetch a particular 

ROOT file or other output file.
•Generate plots, run tests, etc.

Physicist
•Checks in new analysis code after running 

locally.
• This is the primary way to interact with the 

analysis system.
• Either a job is fired off automatically by the 

check in, or physicist does it manually when 
they are ready.
•Only results from the CI server are used: 

thus no hand-art (for the paper, CONF, 
talks…)

Data Preservation Features

Official ATLAS Production 
Dataset

(has unique name)

Analysis TTree Maker
• Runs GRID job from code stored in ATLAS 

SVN
• Resulting dataset gets unique name
• Software does query to ATLAS job system 

(BigPanda) to figure out what has been run 
and hasn’t.
• Big problem: user datasets sometimes 

remain on GRID for less than a month.
• Command line tools (on Windows!) compiles 

and submits GRID job with just ATLAS dataset 
name, job name, and job version.

job(DiVertAnalysis,8)
{

release (Base,2.3.53)
package(atlasphys-exo/Physics/Exotic/UEH/DisplacedJets/Run2/AnalysisCode/trunk/DiVertAnalysis, 

263193)

submit(DiVertAnalysisRunner -EventLoopDriver GRID *INPUTDS*
-ELGRIDOutputSampleName *OUTPUTDS* -WaitTillDone FALSE -isLLPMC true)

}

Jenkins Analysis Job
•Uses the official ATLAS dataset name, the TTree

job name, and the TTree job version
• Job fails if the dataset hasn’t been produced on 

the GRID (or has been deleted from the GRID).
• Jenkins job now contains the input dataset, 

GRID jobs run on them, and the output ROOT 
file of produced plots, enabling end-to-end 
tracking.

Building After Every Check-in
• It is very useful to build after every checking, just 

like on a real build server.
• You can track exactly what each source code change 

does.
•Major problem: what if your job takes 5 hours to 

re-run?
• Insight: A job consists of 1000’s of plots. Most 

source code changes affect 10 plots.
• Re-run to update the 10 plots, and copy over the 

other unchanged plots.
•Much faster. But requires a very different 

programming model.
• LINQToROOT enables this (including fluent TMVA 

integration).

Status & Future
•A recent analysis was released by ATLAS using 

these tools (ATLAS-CONF-2016-103).
•All the MVA training and limit setting and 

lifetime extrapolation was done with these 
tools.
•Disaster struck: Two days after the release of 

the CONF note a power outage occurred at UW. 
Despite a UPS protecting it, the disk where the 
build machine VM was stored did not recover.
• Future: Investigate cloud options for running the 

build server.
• Complex workflow: Jenkins doesn’t support it 

well.
• Conclusion: This system has many advantages… 

How to bring them to the mainstream?


