Experiments Toward a Modern Analysis Environment: Using TMVA and
other tools in a functional world with continuous mtegratlon for
Abstract analysis

A modern high energy physics analysis code is complex. As it has for decades, it must handle high speed data I/0,
corrections to physics objects applied at the last minute, and multi-pass scans to calculate corrections. An analysis has
to accommodate multi-100 GB dataset sizes, multi-variate signal/background separation techniques, larger

T Gordon Watts
Koo Un|ver5|ty of Washington/Seattle

collaborative teams, and reproducibility and data preservation requirements. The result is often a series of scripts and P h S | C | St
separate programs stitched together by hand or automated by small driver programs scattered around an analysis y
team’s wo.rking directory and disks. Worse, the codse is oft.en much hard.er to read and understfand t?ecause most of it is e Checks in new analysis code after running
dealing with these requirements, not with the physics. This paper describes a framework that is built around the
functional and declarative features of the C# language and its Language Integrated Query (LINQ) extensions to declare |0C3||V-
an analysi§. The framework yse.s language tools to convert the analysis i.nto C+.+ and runs ROOT f)r PROOF as a backend e This is the primary way to interact with the
to determine the results. This gives the analyzer the full power of an object-oriented programming language to put ]
together the analysis and at the same time the speed of C++ for the analysis loop. A fluent interface has been created dand |VSIS SVStem-
for TMVA t.o fit iptg this framework, and can be used as a modgl for incc.).rporating other complex long-running | e Either a jOb is fired off automatically by the
processes into similar frameworks. A by-product of the design is the ability to cache results between runs, dramatically ] o ]
reducing the cost of adding one-more-plot. This lends the analysis to running on a continuous integration server after check In, or IOhVSICISt does it manua”y when
every check-in (Jenkins). To aid to data preservation a backend that accesses GRID datasets by name and transforms th d

. . Lo . . e €y are ready.
has been added as well. This paper will describe this framework in general terms along with the significant
imprgvements described above. ¢ Only FESUItS frOm the CI Server are US@d:

thus no hand-art (for the paper, CONF,
talks...)

Build Job

 Run in a Virtual Machine: isolated,
controlled environment.

* Assures results are repeatable and there is
no hand art.

* As input can use files from other build jobs.

* Or large ROOT-tuples in a known location on
large servers.

* Jobs can run on Linux or Windows

Git/SVN/etc.
°Store/s all SOt{rce User Programs

code for all jobs * Access from any internet connected

* Can store scripts to computer.
run jobs * Use the REST API to fetch a particular
ROOT file or other output file.

* Generate plots, run tests, etc.

Jenkins Build Server

A build server or continuous integration server (Cl) is a REST AP]
batch job manager/server.

* Any external program can
* You give it a set of instructions to run a job. trigger build, retrieve log

* You tell it where in source control to find all the files and result files

source code for the job. e Authenticated with
* You tell it what files are important to archive and standard web security.
save at the end of a successful job. e Jobs run on the build server
* It will run the job, perhaps with some parameters can fetch data files this way.
you specify.
* It will save the log file, version information from
source code used, and important output files.
* A job can be triggered by a web APl or automatically
by a check-in to source control.
* Jenkins, while powerful, is missing enterprise grade Web Interface
security and complex job workflow. Uses the standard  Jcniins

Jenkins web
interface. Available
anywhere in the
world with a log-in.
Shared with other
analysis team
members.

. * Fire off special |
Analysis TTree Maker » Input custom parameters

Jenkins Build Data

/Job Info N /Important Files\

e Parameters used to e All files from all

run jobs kept
* Commands Executed | ¢ Easily accessible

* Log file of job over the web with

* Source Control Tags of _ username D
everything run

Q)ate, time taken, etc./

Data Preservation Features

Official ATLAS Production * Runs GRID job from code stored in ATLAS * Configure jobs (change commands, etc.)
Dataset SVN * Look at previous jobs config
(has unique name) * Resulting dataset gets unique name * Easy access to log files

e Software does query to ATLAS job system * Each access to archived files from each job
(BigPanda) to figure out what has been run * Maintenance (prune saved job directory,
and hasn’t. etc.)

Jenkins Ana Iysis Job * Big problem: user datasets sometimes
* Uses the official ATLAS dataset name, the TTree remain on GRID for less than a month. Status & Future
job name, and the TTree job version * Command line tools (on Windows!) compiles * A recent analysis was released by ATLAS using
 Job fails if the dataset hasn’t been produced on and submits GRID job with just ATLAS dataset these tools (ATLAS-CONF-2016-103).
the GRID (or has been deleted from the GRID). name, job name, and job version. * All the MVA training and limit setting and
» Jenkins job now contains the input dataset, [oeranahes lifetime extrapolation was done with these
GRID jobs run on them’ and the output ROOT gcefjgggija:sishgyi)xo/Physics/Exotic/uEH/DisplacedJets/Runz/Ana|ysisCode/trunk/DiVertAna|ysis, t0.0|5-
file of produced plots, enabling end-to-end A SR oL oomer D PO TOS: * Disaster struck: Two days after the release of
tracking. ELGRIDOutputSampleName *OUTPUTDS* -WaiTilDone FALSE -#sLLPMC true) the CONF note a power outage occurred at UW.
Despite a UPS protecting it, the disk where the
BUi|ding After Eve ry Check-in build machine VM was stored did not recover.
* It is very useful to build after every checking, just source code changes affect 10 plots. * Future: Investigate cloud options for running the
like on a real build server. * Re-run to update the 10 plots, and copy over the build server.
* You can track exactly what each source code change other unchanged plots. * Complex workflow: Jenkins doesn’t support it
does. * Much faster. But requires a very different well.
» Major problem: what if your job takes 5 hours to programming model. * Conclusion: This system has many advantages...
re-run? * LINQTOROOT enables this (including fluent TMVA How to bring them to the mainstream?

* Insight: A job consists of 1000’s of plots. Most integration).



