LSST Data Management Jacek Becla (interim) DM Project Manager

October 13, 2016

LSST in a Nutshell

- Decade-long, deep, wide, fast time-domain survey of optical sky
 - Highest ranked project in 2010 Decadal Survey
- Consists of
 - 8-meter class wide-field ground based telescope
 - 3.2 Gpix camera
 - Automated data processing systems
- Construction funding
 - Telescope & Site, DM, EPO funded by NSF, MREFC, \$473M
 - Camera fabrication funded by DOE, MIE, \$168M
- Science themes driving LSST requirements:
 - Taking a census of moving objects in the solar system
 - Mapping the structure and evolution of the Milky Way
 - Exploring the transient optical sky
 - Determining the nature of dark energy and dark matter

Located in Central Chile

In Construction

Commissioning in < 3 years

LSST DM From a Scientist's Perspective

- A stream of ~10 million time-domain events per night, detected and transmitted to event distribution networks within 60 seconds of observation.
- A catalog of orbits for ~6 million bodies in the Solar System.
- A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 trillion observations ("sources"), and ~30 trillion measurements ("forced sources"), produced annually, accessible through online databases.
- Deep co-added images.
- Services and computing resources at the Data Access Centers to enable user-specified custom processing and analysis.
- Software and APIs enabling development of analysis codes.

Infrastructure: Petascale Computing

Running processing pipelines

- Dedicated data center
- Process images in real-time to detect changes in the sky
- Produce annual data releases

Data Access Centers will provide end-user analysis capabilities and serve the data products to LSST users

Setting up a Prototype DAC at NCSA

- 1. Compute and storage resources in OpenStack cluster.
- 1000-core processing cluster and 2.5-PB GPFS storage for QA and verification testing, stack development.
- 3. 30-node qserv database and SUI service integration environment
- 4. Infrastructure for testing object storage technologies and intersite data transfer.

Computing Infrastructure and Networks

Long Haul Networks to transport data from Chile to the U.S.

- 200 Gbps from Summit to La Serena (new fiber)
- 2x100 Gbit (minimum) for La Serena to Miami, FL (protected, existing fiber)
- Add'l 100 Gbit link Santiago. Chile to Boca Raton, FL

Satelling Processing Center

(CC-IN2P3, Lyon, France)

Data Release Production (50%)
French DAC

Archive Site

Archive Center

Alert Production Data Release Production (50%)

Long-term Storage (copy 2)

Data Access Center

Data Access and User Services

Summit and Base Sites

Large Synoptic Survey Telescope

Telescope and Camera
Data Acquisition
Crosstalk Correction
Long-term storage (copy 1)
Chilean Data Access Center

HQ Site

Science Operations
Observatory Management
Education and Public Outreach

State-of-the-art Scientific Algorithms

- Science Pipelines carry core scientific algorithms that process or analyze raw LSST data to generate output Data Products
- Variety of processing
 - Image processing
 - Measurement of source properties
 - Associating sources across space and time, e.g. for tracking solar system objects

Prototype LSST Science Pipelines Are Running on HSC Survey ...

HSC "ultra deep" gri imaging in COSMOS, with a total of 1.5 hours in g and r and 3 hours in i; (280/550 LSST visits).

The visits were processed, calibrated, registered, added, and the resulting coadds processed using the LSST stack.

These catalogues are being used to carry out first-year HSC science.

Credit: HSC collaboration, Robert Lupton and LSST DM @ Princeton.

Processing data at scale:

HSC Survey S16A Data Release

Exposures: 8192 images

(note: deeper than LSST, exposure time is ~minutes)

Areal coverage: 174 deg²
Total data volume: ~200TB

Notes:

- Using a fork of LSST science pipelines adapted to HSC camera (will not be necessary as of Dec'16)
- Using HSC-Survey's orchestration middleware

... and enabling science.

High-redshift quasars selected from the HSC `wide' data (10 minutes per band in gr and 20 minutes in /izy/; equivalent to 30 and 60 LSST visits, respectively).

Followup spectra were taken at Subaru, resulting in the discovery of second-highest known QSO redshift.

Credit: Yoshii Matsuoka et al. 2016.

HSC has been a good test bed for early LSST technology. Both HSC and LSST benefited.

Complex Middleware

Orchestrating execution of science pipelines on hundreds of thousands of cores

- Frameworks to construct pipelines out of basic algorithmic components
- Orchestration of execution on thousands of cores
- Control and monitoring of the whole DM System

Isolating science pipelines from underlying hardware

- Services used by pipelines to access/produce data and communicate
- "Common denominator" interfaces handle changing underlying technologies

Massively Parallel, Scalable Database for **Spherical Data**

database

Qserv

- Home-grown, specialized, shared-nothing query service
- Relies on MySQL and XRootD
 - XRootD used for scheduling queries and communication
- Unique state-of-the-art features:
 - Special optimizations for concurrent scans
 - Spherical geometry
- Reaching beta state

Cutting-edge Visualization

Firefly – Open source WEB UI Framework, for building web-based interactive, exploratory analytics for large science archives

Exposing native JS API, can easily embed Firefly widgets into HTML pages (e.g. IPython notebooks)

Industry standard build/deployment tools (npm, webpack)

Note: To be deployed in production at IRSA in November 2016

It Has to Run. Reliably.

Science QA & Reliability Engineering (SQuaRE)

Database

Core Algorithms

Middleware

Infrastructure

DM Team

- Distributed team
- ~60 FTEs / 80+ people
- Mix of domain-experts and software engineers
- Hiring and on-boarding almost complete
- ~5x expansion comparing to start of MREFC

Computing in Astronomy and HEP – what is similar and what is not?

Data

- Size
 - HEP produces more data,
 Astro is catching up (LSST, SKA)
- Model
 - Astro data structures simpler, fit RDBMS
 - But some queries don't!
- Cross-survey
 - Astro data from other surveys correlate well
- Standardization
 - Significant efforts in Astro (VO, ADQL, TAP)

- LSST:
 - O(100) PB all databases
 - Largest data release o(10) PB
 - Images O(400) PB
 - Virtual and persisted

Software

- Many similarities
 - Open source & tools
 - Data reduction
 - Pipelines
 - Data releases
 - User-facing frameworks, well defined APIs

Infrastructure

- Tiered data centers
 - HEP ahead, Astro starts to follow
- Dedicated long-haul networks
- Cloud anyone?

Data Analysis in Astro

- Wide range of users in Astro
 - Professional astronomers, amateur astronomers, classrooms, public
- Wide range of questions
 - Complex full-sky correlations, scans, simple selections
- Wide range of tools
 - SQL, iPython, Jupyterhub

Summary

- Computing in astronomy
 - Large scale / distributed
 - Some unique challenges
 - Many commonalities with HEP computing

Let's collaborate more!