## COMPUTING cHALLENGES IN LIGHT SOURCES (CHILS 2016???)

Dula Parkinson

Advanced Light Source, Lawrence Berkeley National Laboratory





#### Thanks to:





































































#### A few of the light source user facilities





**ALS** 

#### **Reciprocal Space**

(Scattering)

HipGISAXS/HipMC parallel Scattering



#### **Real Space**

(Tomography)

Arec3d, QuantCT, CrunchFlow



#### Spectroscopy

(MicroXas)

ShirleyXAS (MSD) BerkeleyGW (NERSC)



- Operational - - - Comissioning

Hybrid (COSMIC)

> Ptychographic reconstruction



ALS, NCXT, CXRO, BCSB, etc.



(Oral history, as told to me by Alastair MacDowell)

# A BRIEF HISTORY OF SYNCHROTRON USER FACILITIES

1980s: X-rays









2010s: X-rays + Endstation + Computing

### The Future: Smarter computing





#### Bringing in increasingly impure users...





## "Physicists seem to phrase things in a solvable way." -Alastair MacDowell





#### **ALS User Community**







## User time is increasingly spent on computing (with decreasing expertise)





## User time is increasingly spent on computing (with decreasing expertise)







Design + Experiment



# COMMON COMPUTING SCENARIOS AT LIGHT SOURCES



#### Case 0: Users who collect data

"Not processing your data in real time is the first step towards not processing your data at all."

— Peter Zwart

- Many users don't have access to the computers/software on their own
- >20% new users



Babylonian tablet; Image never published



#### Case 1: Users who collect lots of data

>900, 3D time points (~3TB) from 1 day of data collection





#### **Case 2: Experiment feedback**

- Does the data look ok?
- When should I change parameters (speed up, slow down, zoom in)?
- Acquisition automation







HA Bale, RO Ritchie, et al, Nature Materials, 2013, 12(1) 40-46



#### Case 3: The "Digital Twin"

- After collecting initial data, create model and launch simulation
- The simulation gives the direction for experiment control and automation









#### **More Scenarios**

- Collecting fast or low quality scans, rely on algorithms to rescue
- Using machine learning to sort/search/mine features in data
- Sharing/comparing data across techniques and facilities
- Adding and linking data and metadata from many sources





F Schluenzen et al, Resesarch Data Alliance



#### **Challenges**

- Lots of small groups
  - hard for individual users to justify development expense
  - Average computing hardware and skill of light source users not high
    - laptops, Windows
    - 20% new users
  - Large variety of computing needs, best matched to different hardware (e.g. GPU, etc.)
- In U.S., not enough computing investment and planning by BES
  - many light sources are retrofitting computing/network for working instruments
- Lots of existing code that is difficult to re-use (or not available)
  - lots of reinventing the wheel
- Not enough communication
  - amongst light sources
  - light sources and users
  - light sources with computing, HEP, etc.

#### How to proceed?

- Some standards (HDF5, Message Queues, Globus)
- Small reusable tools (rather than monolithic)
- Develop software with an eye to sharing/collaborating (open frameworks and architectures)
- Continued resources towards developing computing, working together and sharing code
  - start Computing cHallenges in Light Sources (CHILS) conferences?
- Collaborate with CHEP in future areas?
  - machine learning/neuromorphic computing
  - streaming data
- Interchange of staff between fields





### **EFFORTS AT ALS/BERKELEY LAB**



#### Collaboration

- Light Source Facilities
  - Advanced Light Source
- Network
  - LBLnet, ESnet, etc. give 10Gb+
- Computers
  - DTN's, GPU clusters, HPC centers
- Applied Math, Algorithms, Software
  - CAMERA (led by Jamie Sethian, Mathematics Group)
- Data management, workflow, visualization
  - SPOT Suite (led by Craig Tull, Computational Research Division)
- Users













### SPOT Suite: data management, automated workflow, sharing, data access, remote 3D viz

- Uses HDF5, RabbitMQ, SPADE
- Built by CHEP'ers, Craig Tull, Simon Patton





### High Performance Scattering Simulations During Beamtime











A. Hexemer (LBNL/CAMERA), C.E.Tull (LBNL), J. Deslippe (NERSC), R.S. Canon (NERSC), E. Dart (ESnet), I.Foster (ANL), J.A. Sethian (LBNL/CAMERA), G. Shipman (ORNL), J. Wells (ORNL), K. Kleese van Dam (PNNL), T.P. Russell (UMass), E. Gomez (PennState)

Facilities: ALS (BES), NERSC (ASCR), ANL( ASCR), OLCF (ASCR), ESnet (ASCR), CAMERA (ASCR



## Fiber and crack analysis through pattern matching











### Thanks!

