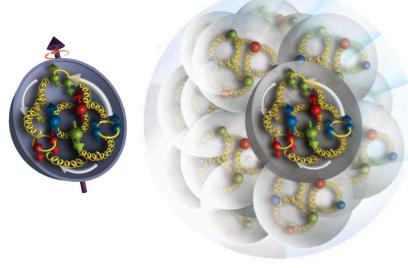



# Computing for the Electron-Ion Collider

#### Markus Diefenthaler (Jefferson Lab)



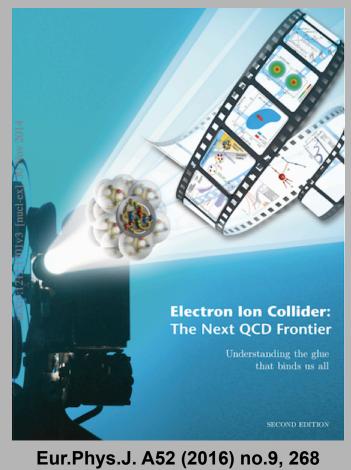

22<sup>nd</sup> International Conference on Computing in High Energy and Nuclear Physics

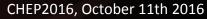


# **Electron-lon** Collider (EIC)

 next-generation U.S. facility to study quarks and gluons in strongly interacting matter:

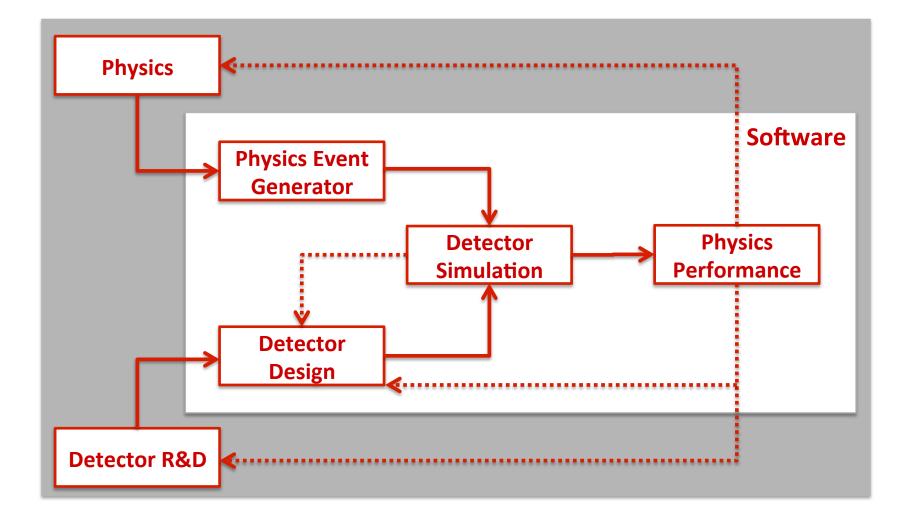



world's first collider of:


Office of

Science

- polarized electrons and polarized protons/light ions
- electrons and nuclei


#### **EIC: The Next QCD Frontier**







# **EIC R&D** and software development







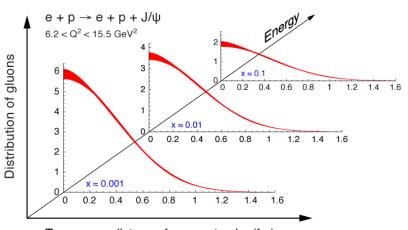
# **Computing Challenges in NP**

**NP experiments** driven by beam intensity, polarization, exquisite control of background and systematic

3000

2500

1500


1000

Non trivial glue

7000 N/MeV

#### **multi-dimensional**, e.g., 3D imaging of quarks and gluons

multiple channels, e.g., discovery search of gluon-based exotic particles (PWA, 1000s of waves)



Transverse distance from center,  $b_T$  (fm)

# high statistics in five or more dimensions and multiple particles

strongly iterative analysis for reliable, model-independent analysis





 $1^{-+} 0^{+-} 2^{+-}$ 

Exotics

 $\square q\bar{q} P$  $\square q\bar{q} D$ 

 $\square q\bar{q} G$ 

 $\square^{q}\bar{q}g$ 

# **Analysis environments**

#### **Developments of analysis environments:**

- new projects starting (JLab 12 GeV) and on the horizon (EIC)
- likely explosion of data even at the small nuclear experiments
- think about the next generation(s) of analysis environments that will maximize the science output

**LHC experiments**: tremendous success in achieving their analysis goals and producing results in timely manners

#### Lesson learned at LHC experiments:

- as the complexity and size of the experiments grew
- the complexity of analysis environment grew
- time dealing with the analysis infrastructure grew

Anecdote from LHC

a typical LHC student or post-doc spends up to 50 % of his/her time dealing with computing issues





## New analysis environments

#### **User centered design**

- understand the user requirements first and foremost
- engage wider community of physicists in design whose primary interest is not computing
- make design decisions solely based on user requirements
- web-based user interfaces, e.g. interactive analysis in Jupyter Notebook

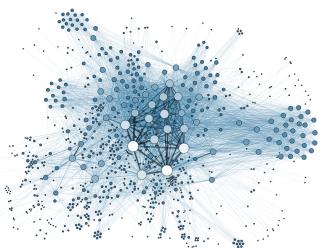
#### Future compatibility (both hardware and software)

- most powerful future computers will likely be very different from the kind of computers currently used in NP (Exascale Computing)
- structures robust against likely changes in computing environment
- apply modular design: changes in underlying code can be handled without an entire overhaul of the structure

#### Think out of the box

- the way analysis is done has been largely shaped by kinds of computing that has been available
- computing begins to grow in very different ways in the future, driven by very different forces than in the past (Exascale Computing)
- think about new possibilities and paradigms that can and should arise

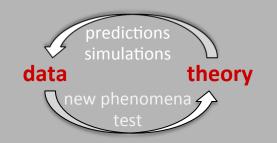



## Big Data - A possible paradigm shift for NP / HEP?

• Big Data is not about size

• **Big Data** is about the ability to quickly analyze large amounts of data. i.e.

- have all raw and processed data permanently store
- in a scale-able random access storage
- with fast, efficient data indexing (lookup) capabilities
- →more efficient use of computational resources
- →fast data (re)processing and analysis
- statistical language of R:
  - driven statistical analysis for more than a decade
  - emerging as the leader in statistical languages for Big Data
  - an alternative to ROOT?
  - NP should acquire some knowledge here (cooperate with other fields / industry)
- NoSQL (non-relational) databases:
  - more flexible
  - better scaleable than traditional, relational databases
  - e.g., a graph database (e.g., used by Facebook)








# Interplay of data and theory

#### Feedback loop between data and theory



#### **Comparison to:**

- analytical calculations
- Monte Carlo (MC) simulations
- Lattice-QCD calculations

#### Data-theory comparison: relies on

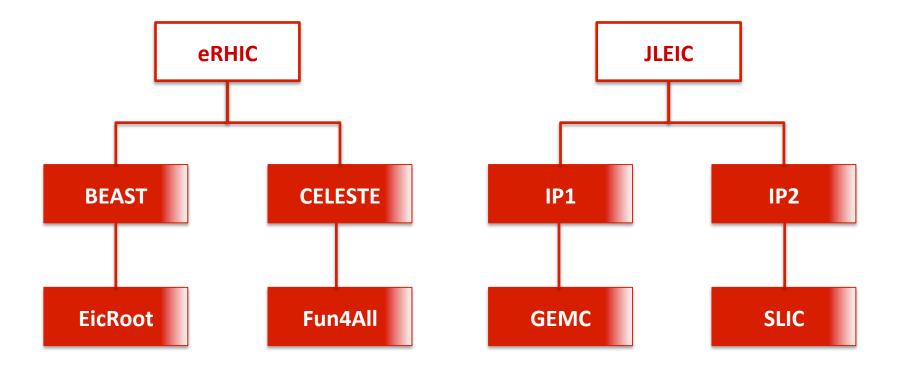
- open access to data-theory tools
- standardization of data-theory tools
- comparison tools for quick turnaround

#### MC event generator:

- faithful representation of QCD dynamics
- based on QCD factorization and evolution equations

#### Usage by experimentalists:

- detector corrections
- analysis prototyping
- comparing to theory


#### Usage by theoreticians:

- easy off-the-shelf state-of-the-art tool that looks like data
- validate against and investigate theoretical improvements





# Existing software frameworks for the EIC



#### **Building on existing EIC software:**

- build forward-compatible interfaces between existing frameworks / tools
- identify common tools and improve them (e.g. MCEG)
- add tools that are forward-compatible with existing frameworks





# Forming a software consortium for the EIC

#### September 2015 EIC Software Meeting

Workshop organized by Elke-Caroline Aschenauer and Markus Diefenthaler <a href="https://www.jlab.org/conferences/eicsw/">https://www.jlab.org/conferences/eicsw/</a>

review of existing EIC software frameworks and MCEG available for the EIC

#### January 2016 Generic R&D Meeting: LOI for Software Consortium

**Review** "A robust software environment, compatible with the existing software frameworks, is very important for the development of the physics case for the EIC."

#### March 2016 Future Trends in NP Computing

Workshop organized by Amber Boehnlein, Graham Heyes, and Markus Diefenthaler <u>https://www.jlab.org/conferences/trends2016/</u>

discussion of computing trends, e.g., Big Data, machine learning, Exascale Computing incubator for ideas on how to improve analysis workflows in NP

July 2017 Generic R&D Meeting: Proposal for Software Consortium consisting of scientists from ANL, BNL, JLab, INFN Trieste, and SLAC R&D funds for workshop, travel, and students have been awarded (eRD20)



# **Global objectives**

#### Interfaces and integration

- connect existing frameworks / toolkits
- identify the key pieces for a future EIC toolkit
- collaborate with other R&D consortia

#### Planning for the future with future compatibility

- workshop to discuss new scientific computing developments and trends
- incorporating new standards
- validating our tools on new computing infrastructure

#### Organizational efforts with an emphasis on communication

- build an active working group and foster collaboration
- documentation about available software
- maintaining a software repository
- workshop organization





# **Immediate development in FY17**

#### Interfaces and integration

- start the development of a library for simulating radiate effects
- work towards a common geometry and detector interface
- work towards an unified track reconstruction
- collaborate with TMD MC and DPMJetHybrid (eRD17) and other software projects that are essential for an EIC

#### Planning for the future with future compatibility

- validation of critical Geant4 physics in the energy regime of the EIC
- start the development of an universal event display for MC events
- promote open-data developments for efficient data-MC comparison from the beginning
- build interfaces to forward compatible, self-descriptive file formats

#### Organizational efforts with an emphasis on communication

- build a community website
- organize software repositories dedicated to the EIC
- organize a workshop



FY1

# **Computing for the Electron-Ion Collider**

- Electron-Ion Collider (EIC): next-generation U.S. facility to study quarks and gluons in strongly interacting matter
- NP experiments: driven by precision to access the multi-dimensional and multi-channel problem space
- EIC Computing: think about the next generation(s) of analysis environments that will maximize the science output
- EIC Computing consortium:
  - interfaces and integration
  - planning for the future with future compatibility
  - organizational efforts with an emphasis on communication



