

Una breve introduzione alla Fisica della Particelle

INFN Sezione di Pisa International Masterclass, 2 Marzo 2016

Scopo della fisica delle particelle

 Studiare (e capire!) l'universo al livello più fondamentale, più elementare

 Quali sono i costituenti della materia? PARTICELLE ELEMENTARI

 Come si possono descrivere le interazioni tra questi costituenti?

FORZE FONDAMENTALI

Tanti modi per studiare il mondo

Il mondo del piccolo...

- Storicamente, lo studio del piccolo ha spesso portato grandi progressi nella nostra comprensione dell'universo

Curioso legame con il cosmo:

- Big Bang Theory:

 l'universo che vediamo oggi dipende fortemente dalle particelle create al Big Bang e le interazioni tra loro
- Inoltre, possiamo osservare particelle elementari che ci arrivano dallo spazio (raggi cosmici)

Creare le condizioni iniziali dell'universo: LHC

Le collisioni
 prodotte dal
 LHC creano
 le condizioni
 esistenti 10⁻¹⁰
 sec dopo il
 Big Bang

Teoria v. Esperimenti

Teorici: formulare modelli matematici che descrivono le particelle fondamentali e la loro interazioni. Una teoria dovrebbe predire fenomoni che possono essere osservati.

Sperimentali: osservare i fenomeni previsti da teoria. Anche meglio: trovare qualcosa che non torna con le teorie esistenti.

Oggi siamo fisici sperimentali

Teoria: Modello Standard

- Teoria che descrive le particelle elementari e 3 delle 4 forze fondamentali.
- Modello matematico basato sulla teoria.
 quantisica dei campi
- Sviluppata nella seconda metà del XX secolo.
 - Impressionante successo: nessuno è riuscito a confutaria

Le particelle del Modello Standard

Materia

ordinaria

- Quark, leptoni, bosoni
- 3 particelle (u,d,e) costituiscono la materia ordinaria
- Le altre 14 sono esotiche, esistevano al tempo del Big Bang, oggi solo in laboratorio

Le quattro forze

Modello Standard

- Interazione forte
 - tra quarks, mediata dal gluone
- Interazione elettromagnetica
 - tra particelle cariche, mediata dal fotone.
 - 100 volte più debole della forza forte
- Interazione debole
 - tra quark e leptoni, mediata dai bosoni Z,W.
 - 10,000,000 volte più debole della forza forte
- Interazione gravitazionale
 - tra particelle con massa, mediata dal gravitone
 - 10³⁹ volte più debole della forza forte

Collisioni ad alta energia

- Con collisioni violenti, possiamo riprodurre le condizioni iniziali dell'universo
- Perché "alta energia"?
 Perché E=mc²!
 - l'energia delle
 particelle che si
 scontrano (protoni) si
 trasforma in massa,
 creando particelle
 pesanti
- Ciò ci permette di studiare particelle pesanti, come i bosoni Z e H
- E cercare particelle ancora non osservate

Il perché del LHC

- Trovare l'ultimo pezzo del Modello Standard: il bosone di Higgs
- Capire se il Modello Standard è completo
 - ci sono motivi per credere che non sia una teoria completa
- Se ci sono fenomeni al di là del Modello Standard, cosa sono?
 - nuove particelle
 - nuove interazioni

L'ultimo (?) pezzo del puzzle: Bosone di Higgs

ovvero: il problema di massa

La massa delle particelle ricopre 11 ordini di grandezza -

- Non c'è nessuna regolarità nei valori di massa delle particella elementari
- I neutrini sono molto leggeri
- L'elettrone è 350.000 volte più leggero del quark più pesante
- Tra i bosoni, il fotone è privo di massa, ma i bosoni W e Z pesano circa come 80-90 protoni

Perché?

Ancora più grave...

 Nella versione originale del Modello Standard tutte le particelle avevano massa nulla (!)

no bueno!

 Tre fisici teorici hanno proposto un modo per conferire massa alle particelle: Higgs, Englert e Brout

Meccanismo di Higgs

- Introduce un nuovo campo che permette le particelle di acquisire massa
- Più forte una particella interagisce con il campo più la particella è massiva

THE HIGGS MECHANISM

Conseguenza importante: prevede l'esistenza di una nuova particella: il bosone di Higgs

Però, nessuna previsione della massa della nuova particlla.

La caccia allo Higgs

- Lunga ricerca che è durata decenni
- In realtà, solo con LHC abbiamo avuto abbastanza energia di produrre tanti bosoni di Higgs
- Finalmente...

4 Luglio 2012: Scoperta dello Higgs a 2 esperimenti del LHC

 $H \rightarrow ZZ \rightarrow 4I$

Adesso?

- L'ultima particella del Modello Standard trovata
- Ma rimangono tante domande:
 - quella delle masse diverse
 - i quark e leptoni sono elementari o sono composti da particelle più piccole?
 - perché 3 generazioni di quark e leptoni? Ci sono altre generazioni non ancora scoperte?
 - dove è andata l'antimateria?
 - di cos'è fatta la materia oscura?
 - e tante altre...

Anti-materia

Per ogni particella fondamentale esiste una corrispondente anti-particella, fatta quindi da anti-materia, con la stessa massa e le stesse proprietà, ma con carica elettrica opposta.

Matter

Anti-Matter

L'antimateria può essere creata in Laboratorio

Conosci un' Big Bang: quantità uguali di anti-persona? materia e anti-materia create **Dark Energy Accelerated Expansion Afterglow Light** Dark Ages **Development of** Pattern 400,000 yrs. Galaxies, Planets, etc. Inflation **WMAP** Quantum **Fluctuations** Equal amount of 1st Stars about 400 million yrs. matter and **Big Bang Expansion** antimatter created Today: almost 13.7 billion years no antimatter So where did all the antimatter go? in the universe

Violazione della Simmetria CP

In realtà, un piccolo squilibrio tra materia e anti-materia è previsto dal Modello Standard. Questo è dovuto alla violazione della Simmetria CP nella forza debole.

CP = Coniugazione di carica (inverte la carica) x Parita' (inverte le coordinate come in uno specchio)

Questo fenomeno non è sufficiente a spiegare il perché l'universo sia fatto di materia e non di anti-materia. Deve esistere qualche nuova interazione che viola CP.

Un'altra questione aperta: la materia oscura

- Solo 5% dell'universo è visibili ai nostri telescopi
- 24% dell'universo è fatto di materia oscura
- Evidenze di materia
 oscura: velocità angolare
 delle galassie, lente
 gravitazionale

Una questione interessante per la fisica delle particelle

- Perchè questa materia oscura dev'essere fatta da particelle, forse particelle nuove
- Le particelle devono essere elettricamente neutre (altrimenti non sarebbe "oscura")
- Nel Modello Standard i neutrini sono un candidato per la materia oscura, ma ci sono problemi con questa ipotesi
- Teorie oltre il Modello Standard, come Supersimmetria, propongo particelle neutre, come neutralini, che sono candidati per la materia oscura
- Queste particelle potrebbero essere prodotte in LHC: sono energicamente cercate negli esperimenti al CERN (ma non viste finora)

Parliamo di LHC

1. Acceleratore: una macchina potente per accelerare i protoni e farli scontrare

- Acceleratore: una macchina potente per accelerare i protoni e farli scontrare
- Rivelatori: strumenti giganteschi che registrano le particelle prodotte quando emergono dal punto della collisione

- Acceleratore: una macchina potente per accelerare i protoni e farli scontrare
- Rivelatori: strumenti giganteschi che registrano le particelle prodotte quando emergono dal punto della collisione
- Supercomputing: per raccogliere, conservare, distribuire ed analizzare l'enorme quantita' di dati prodotti dai rivelatori.

- Acceleratore: una macchina potente per accelerare i protoni e farli scontrare
- Rivelatori: strumenti giganteschi che registrano le particelle prodotte quando emergono dal punto della collisione
- 3. Supercomputing: per raccogliere, conservare, distribuire ed analizzare l'enorme quantita' di dati prodotti dai rivelatori.
- 4. Scienza collaborativa su scala mondiale: migliaia di scienziati ed ingegneri per disegnare, costruire ed operare queste macchine molto complesse

LHC Tunnel

Large Hadron Collider

- I protoni sono accelerati da potenti campi elettrici a velocità vicine a quella della luce. Sono guidati lungo le loro traiettorie circolari da potenti magneti dipoli supercoduttori.
- I magneti dipoli lavorano a 8.3 Tesla, (200.000 volte il campo magnetico terrestre) & 1.9 K (-271°C) in elio suferfluido.
- I protoni viaggiano in un tubo che e' a vuoto piu' spinto ed a temperatura piu' bassa che lo spazio interplanetario.

Esperimenti di fisica delle particelle

Due strade:

- mirare alle energie più alte: Energy Frontier
 - da la possibilità di creare nuove particelle molto pesanti, come quark top, Higgs, nuove particelle di Supersimmetrie, ecc.
 - ATLAS, CMS, ALICE
- mirare ad alta intensità: Intensity Frontier
 - studiare particelle di massa più bassa (p.e. mesoni B, D)
 - fare misure di alta precisione che sono capaci di testare il Modello Standard molto accuratamente: fisica del flavour
 - LHCb

Come si identificano le particelle instabili

- Le particelle più interessanti sono quelle instabili (di solito)
 - dopo pochissimo tempo decadono (si trasformano) in altre particelle più leggere
 - queste poi decadono al loro turno, e il processo continua fino a quando rimangono solo particelle stabili che si "vedono" nel nostro rivelatore

Misurare impulso e energia delle figlie

$$B_s^0 \to D_s^- \pi^+ \to [\phi \pi^-] \pi^+ \to [[K^+ K^-] \pi^-] \pi^+$$

Conservazione dell'energia : $E = E_1 + E_2 + E_3 + ...$ Conservazione dell'impulso : $P = p_1 + p_2 + p_3 + ...$

Necessaria la misura delle traiettorie, e identificazione del tipo di particella.

Massa invariante della particella: $E^2 - p^2 = m^2$.

Calcola massa invariante

Possiamo selezionare questi candidati e studiare le loro proprietà, per esempio, la vita media.

Se le 4 tracce che abbiamo selezionato provengono veramente da un mesone B_s^0 , allora la massa invariante calcolata sarà vicina alla massa del B_s^0 (5366 MeV). A volte, però, sbagliamo e prendiamo 4 tracce casuali (fondo combinatorio). In questo caso la massa invariante non mostra un picco alla massa del B_s^0 .

Per concludere...

- Lo studio della fisica delle particelle ci permette di capire l'universo al livello più fondamentale
- Nonostante il grande successo del Modello Standard nel corso degli ultimi 50 anni, ci sono ancora dei problemi fondamentali da risolvere mancanza di anti-materia nell'universo

la composizione della materia oscura

LHC al CERN di Ginevra è un laboratorio eccezionale per lo studio di queste e altre questioni della fisica delle particelle