CMB lensing and delensing

Anthony Challinor

KICC/IoA/DAMTP University of Cambridge

Lensing of the CMB

- O(50) deflections by 100 Mpc scale lenses
 - Peak efficiency around z=2

- Predicts 2.5 arcmin r.m.s. deflections coherent over several degrees

CMB lensing power spectrum

• Deflection field $d = \nabla \varphi$ in linear theory

Lensing adds information

• Geometric degeneracy in CMB power spectra broken by different amounts of lensing in models with same $d_A(z_*)$

- Access to curvature, sub-eV neutrino masses, dark energy etc. from CMB alone

$T(\hat{n}) \ (\pm 350 \mu K)$

Duncan Hanson

$T(\hat{n}) \ (\pm 350 \mu K)$

$\mathbf{B}(\hat{n}) \ (\pm 2.5 \mu K)$

Duncan Hanson

Lens reconstruction

Planck Collaboration 2015

Representative T and P noise levels

Lens reconstruction noise levels

• EB particularly helpful for pol. noise < 5 μ K arcmin

Applications of CMB lensing

- Cosmology from auto-power spectrum
 - Neutrino masses, curvature, (early) dark energy etc.
- Cross-correlation with other LSS tracers
 - Degeneracy breaking, self-calibration, high-z astrophysics
- Delensing
 - Improve GW constraints (r and n_t)
 - Delens high-I EE (sharpen peaks for N_{eff} etc.)
- Measure cluster masses of full internal cluster sample (see clusters talks)

Neutrino physics

Role of reionization optical depth

Allison+ 2015

Galaxy lensing-CMB lensing

- Probes redshifts intermediate to CMB lensing and galaxy autos
- X-correlation more immune to additive systematic effects
- Full joint analysis can calibrate multiplicative bias effects in shape measurement and intrinsic alignments

Evidence for lensing systematics?

Delensing degree-scale B-modes

What scales are important?

• Intermediate-scale lenses important for large-scale BB

Impact of delensing

Requirements for delensing BB

Implications for inflation constraints

Implications for inflation constraints

Towards delensing: indirect BB

• "Correction" in $B_{delens} \sim B - E \phi$ correlated with B at expected level

 C^{BB} $\sim B(E\hat{\phi})$

See also Hanson+2013, Ade+2014, and van Engelen+2014

Iterative delensing?

Feeney & Errard

CIB-CMB lensing

- CIB well-matched in z and halo mass with CMB
 - 80% correlated

First demonstration of CIB delensing

• CIB from 857- α 545 Planck channels

Larsen, AC+ in prep.

- Reduces correlation with CIB below 80%

On what scales does CIB help?

• Reconstruction+CIB delensing improves $\sigma(r)$ by factor 2 for r=0 for LiteCOrE-120, cf. 1.6 with only reconstruction

Summary

- CMB lensing important part of science case at intermediate (space) and high-resolution (e.g., S3 and S4)
- CMB lensing power spectrum enhances cosmology
 - E.g., at least 4σ detection of neutrino mass (with DESI/ Euclid BAO)
- O(2x10⁵) well-understood lensing modes for crosscorrelation and other legacy science
- Can improve $\sigma(r)$ by factor 1.6-2.3 with internal delensing (for low r) at few arcmin resolution
 - Modest further improvements in combination with CIB
- Cluster masses of full SZ-selected samples