Neutrinos

J. Lesgourgues
Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen
Motivations

- Neutrino oscillations prove that there is a mass mixing matrix:

\[
\begin{pmatrix}
\nu_e & \nu_\mu & \nu_\tau \\
\end{pmatrix}
\begin{pmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
\end{pmatrix}
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau \\
\end{pmatrix}
\]

- Propagating mass eigenstates

- Flavor eigenstates: \(m_1, m_2, m_3, \theta_{12}, \theta_{23}, \theta_{13}, \delta\)

- Right-handed (Dirac) or self-conjugate (Majorana)

- Laboratory experiments measured:
 - 2 squared mass differences, 3 angles, bounds on phase
 - One missing mass! Knowing one new combination would fix everything (maybe up to ordering option) …

- Normal and inverted hierarchy:

\[
\begin{align*}
M_\nu > 0.11 \text{ eV} \\
0.06 \text{ eV}
\end{align*}
\]
Motivations

... for measuring total neutrino mass M_N with cosmology:

- **For particle physicists**
 - More sensitive than β- and double-β- decay (KATRIN, GERDA, ...), works for Dirac and Majorana
 - Complementary to β-decay which contains independent information (on phases, angles, Dirac/Majorana...)
 - Can lead to full understanding of neutrino sector (or give hint of extensions to e.g. sterile neutrinos)
 - Hints on seesaw, leptogenesis, baryogenesis...
Motivations

... for measuring total neutrino mass M_ν with cosmology:

- **For cosmologists**
 - **Safest output/reward of current observational efforts**
 - Neglect neutrinos would **bias** results; e.g.:
 - neglecting $>5\%$ effect in small-scale power spectrum would point incorrectly to running, modified gravity etc…
 - At least 1% impact on H_0 value inferred from CMB (through angular diameter distance)
 - Excluding $M_\nu \sim 0.11$eV would **rule out IH**
 - Excluding $M_\nu \sim 0.06$ eV would **point out at new physics or cosmology**
 - Neutrinos decay or interact strangely
 - Standard neutrino decoupling does not apply (low-temperature reheating, entropy production, etc.)
Neutrino mass detection with CMB

A. Background effects:

1. for same equality redshift, peak scale, \(z_{\text{reio}} \), change \(H_0, \Omega_\Lambda \): late Integrated Sachs-Wolfe, shifted \(\tau_{\text{reio}} \), ...

 Constant peak angular scale: \(\Delta H_0 / [1 \text{ km/s/Mpc}] = - \Delta M_\nu / [0.1\text{eV}] \)

 \(\Delta H_0 = 0.6 \text{ km/s/Mpc} \) coming from different choice of fiducial model \((M_\nu = 0 \rightarrow 0.06\text{eV}) \)

2. also small background effect on recombination history [Grohs et al. 1412.6875]

B. Perturbation effects:

3. early Integrated Sachs-Wolfe effect when neutrinos become non-relativistic at \(500 < z < 1000 \)

 produces a feature in temperature spectrum for \(10 < l < 200 \)

4. fraction of neutrinos already non-relativistic at decoupling: slightly modified neutrino-photon gravitational interaction (very small)

5. reduced CMB lensing (spectrum of temperature, polarisation, extracted lensing potential):

 dominant effects
Neutrino mass detection with CMB

TT, minimal NH, $M_{\nu} = 0.06$ eV

- primary
- primary+ISW
- primary+ISW+lensing

Cosmic Variance

CORE+

(1) (3) (5)
Neutrino mass detection with CMB

EE, minimal NH, $M_\nu=0.06$ eV

Primary+ISW
Primary+ISW+lensing

LiteCORE-120cm
LiteCORE-150cm
CORE+
Cosmic Variance

(1)
Neutrino mass detection with CMB

BB, minimal NH, $M_\nu=0.06$ eV (simplifying gaussian approximation)

LiteCORE-120cm
LiteCORE-150cm
CORE+
Cosmic Variance
Neutrino mass detection with CMB

DD, minimal NH, $M_\nu=0.06$ eV

- LiteCORE-120cm
- LiteCORE-150cm
- CORE+
- Cosmic Variance

L^2 maps for different experiments
Suite of 81 MCMC MontePython forecasts

at TTK (RWTH Aachen),

with Thejs Brinckmann and Sébastien Clesse.
Suite of 81 MCMC MontePython forecasts

A. Instruments: Core+ / LiteCore 150cm / LiteCore 120cm

<table>
<thead>
<tr>
<th>Channel [GHz]</th>
<th>FWHM [arcmin]</th>
<th>ΔT [μK arcmin]</th>
<th>ΔP [μK arcmin]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiteCORE-120, $l_{\text{max}} = 3000$, $f_{\text{sky}} = 0.7$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>13.5</td>
<td>8.8</td>
<td>12.5</td>
</tr>
<tr>
<td>90</td>
<td>11.9</td>
<td>7.1</td>
<td>10.0</td>
</tr>
<tr>
<td>100</td>
<td>10.5</td>
<td>8.5</td>
<td>12.0</td>
</tr>
<tr>
<td>120</td>
<td>8.8</td>
<td>6.7</td>
<td>9.5</td>
</tr>
<tr>
<td>140</td>
<td>7.4</td>
<td>5.3</td>
<td>7.5</td>
</tr>
<tr>
<td>166</td>
<td>6.3</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>195</td>
<td>5.4</td>
<td>3.6</td>
<td>5.0</td>
</tr>
<tr>
<td>LiteCORE-150, $l_{\text{max}} = 3000$, $f_{\text{sky}} = 0.7$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>10.8</td>
<td>8.8</td>
<td>12.5</td>
</tr>
<tr>
<td>90</td>
<td>9.5</td>
<td>7.1</td>
<td>10.0</td>
</tr>
<tr>
<td>100</td>
<td>8.4</td>
<td>8.5</td>
<td>12.0</td>
</tr>
<tr>
<td>120</td>
<td>7.0</td>
<td>6.7</td>
<td>9.5</td>
</tr>
<tr>
<td>140</td>
<td>5.9</td>
<td>5.3</td>
<td>7.5</td>
</tr>
<tr>
<td>166</td>
<td>5.0</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>195</td>
<td>4.3</td>
<td>3.6</td>
<td>5.0</td>
</tr>
<tr>
<td>CORE+, $l_{\text{max}} = 3000$, $f_{\text{sky}} = 0.7$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>8.4</td>
<td>6.0</td>
<td>8.5</td>
</tr>
<tr>
<td>115</td>
<td>7.3</td>
<td>5.0</td>
<td>7.0</td>
</tr>
<tr>
<td>130</td>
<td>6.5</td>
<td>4.2</td>
<td>5.9</td>
</tr>
<tr>
<td>145</td>
<td>5.8</td>
<td>3.6</td>
<td>5.0</td>
</tr>
<tr>
<td>160</td>
<td>5.3</td>
<td>3.8</td>
<td>5.4</td>
</tr>
<tr>
<td>175</td>
<td>4.8</td>
<td>3.8</td>
<td>5.3</td>
</tr>
<tr>
<td>195</td>
<td>4.3</td>
<td>3.8</td>
<td>5.3</td>
</tr>
<tr>
<td>220</td>
<td>3.8</td>
<td>5.8</td>
<td>8.1</td>
</tr>
<tr>
<td>255</td>
<td>3.3</td>
<td>8.9</td>
<td>12.6</td>
</tr>
</tbody>
</table>
Suite of 81 MCMC MontePython forecasts

A. Instruments: Core+ / LiteCore 150cm / LiteCore 120cm

B. Likelihoods:
 - Unlensed TT, TE, EE
 - Lensed TT, TE, EE, BB (*neglecting intrinsic non-gaussianity; delensing irrelevant*)
 - Lensed TT, TE, EE + extracted deflection field DD
Suite of 81 MCMC MontePython forecasts

A. **Instruments:** Core+ / LiteCore 150cm / LiteCore 120cm

B. **Likelihoods:**
 - Unlensed TT, TE, EE
 - Lensed TT, TE, EE, BB (*neglecting intrinsic non-gaussianity*)
 - Lensed TT, TE, EE + extracted deflection field DD

C. **Fiducial models:** minimal NH, minimal IH

D. **Fitted models:** ΛCDM extensions:
 - 7 params (M_γ),
 - 8 params (Y_{He}, r, w, N_{eff}, running, Ω_k)
Suite of 81 MCMC MontePython forecasts

First conclusion: even with Core+, mass splitting is irrelevant

<table>
<thead>
<tr>
<th>Fiducial model</th>
<th>Fitted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH (minimal $M_\nu \sim 0.06\text{eV}$)</td>
<td>Degenerate ($M_\nu >0$)</td>
</tr>
<tr>
<td>NH (minimal $M_\nu \sim 0.06\text{eV}$)</td>
<td>NH ($M_\nu >0.06\text{eV}$)</td>
</tr>
<tr>
<td>IH (minimal $M_\nu \sim 0.1\text{eV}$)</td>
<td>Degenerate ($M_\nu >0$)</td>
</tr>
<tr>
<td>IH (minimal $M_\nu \sim 0.1\text{eV}$)</td>
<td>NH ($M_\nu >0.06\text{eV}$)</td>
</tr>
<tr>
<td>IH (minimal $M_\nu \sim 0.1\text{eV}$)</td>
<td>IH ($M_\nu >0.1\text{eV}$)</td>
</tr>
<tr>
<td>NH (same $M_\nu \sim 0.1\text{eV}$)</td>
<td>Degenerate ($M_\nu >0$)</td>
</tr>
<tr>
<td>NH (same $M_\nu \sim 0.1\text{eV}$)</td>
<td>NH ($M_\nu >0.06\text{eV}$)</td>
</tr>
<tr>
<td>NH (same $M_\nu \sim 0.1\text{eV}$)</td>
<td>IH ($M_\nu >0.1\text{eV}$)</td>
</tr>
</tbody>
</table>
Suite of 81 MCMC MontePython forecasts

Second conclusion: same results with lensed BB or lensing extraction, excepted for ΛCDM + $M_\nu + \Omega_k$ (while without lensing at all: 4 times worse)
Suite of 81 MCMC MontePython forecasts

Third conclusion: minor impact of resolution / sensitivity, in most cases $\sigma(M_\nu) \sim 44$ meV

Results based on runs with lensing extraction:

<table>
<thead>
<tr>
<th>Symmetrised $\sigma(M_\nu)$ in meV</th>
<th>LiteCore120</th>
<th>LiteCore150</th>
<th>Core+</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΛCDM + M_ν</td>
<td>45</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>ΛCDM + $M_\nu + \Delta N_{\text{eff}}$</td>
<td>45</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>ΛCDM + $M_\nu + w$</td>
<td>36</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>ΛCDM + $M_\nu + Y_{\text{He}}$</td>
<td>45</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>ΛCDM + $M_\nu + \text{running}$</td>
<td>45</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>ΛCDM + $M_\nu + r$</td>
<td>43</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>ΛCDM + $M_\nu + \Omega_k$</td>
<td>92</td>
<td>88</td>
<td>84</td>
</tr>
</tbody>
</table>

volume effect in Bayesian parameter inference: $w>-1$ or $r>0$ requires smaller M_ν
Conclusions

• LiteCore / Core+ alone:
 • robust errorbar $\sigma(M_\nu) \sim 44$ meV
 • (excepted with free Ω_k : twice worse sensitivity)

• Very useful probe in combination with LSS experiments
 • Planck + Euclid : $\sigma(M_\nu) = 25$-30 meV : at least 2 sigma detection
 • Core+ / LiteCore + Euclid : $\sigma(M_\nu) = 15$-20 meV: at least 3-4 sigma detection
 • Even better with SKA?
Core+ with lensed BB or lensing extraction

ΛCDM + $M_\nu + \Delta N_{\text{eff}}$
Core+ with lensed BB or lensing extraction
\(\Lambda CDM + M_\nu + w \)
Core+ with lensed BB or lensing extraction
$\Lambda CDM + M_\nu + Y_{\text{He}}$
Core+ with lensed BB or lensing extraction
\(\Lambda CDM + M_\nu + \text{running} \)
Core+ with lensed BB or lensing extraction

ΛCDM + $M_\nu + \Omega_k$
LiteCore 150cm with lensed BB or lensing extraction
$$\Lambda CDM + M_\nu + \Omega_k$$
LiteCore 120cm with lensed BB or lensing extraction
ΛCDM + $M_\nu + \Omega_k$