

Long Duration Ballooning

Why Ballooning? Access to space.

- Wider frequency windows
 - Atmosphere makes > 150 GHz difficult
- Fidelity to large angular scales
- Space-like backgrounds
 - Sensitivity: one hour at 36km is like a day on the ground)
 - Analysis: data representative of a space mission
- Mission durations 5-100 days

At what price?

- Stringent limits on mass, power
- Complexity of automation
- Insane integration schedule
- Narrow, and scarce, flight windows
- Risky recovery

Long Duration Ballooning

Flight Options

- Antarctic Long Duration Balloon (LDB): 10 30 days / 3 tons
- Wanaka Super Pressure Balloon (SPB): 30 100 days / 1 ton
- Polar Night Flights: ~ 10 days
- Conventional Flight (Ft. Sumner, Palestine, Timmons): I day

Flight Parameters

- 33-37 km altitude
- I km altitude stability (200 m for SPB)
- Annual flight windows
 - January (LDB, Svalbard), April (SPB, Wanaka), June (Palestine), September (Ft. Sumner)

Super Pressure Ballooning

- I00 day flights
- I ton payload
- mid-latitudes (day/night cycle)

Second Flight Launched Yesterday!

Polar Night Flights

Sub-orbital radiative environment:

an overwhelming advantage above 200 GHz

Sub-orbital radiative environment:

radiative backgrounds comparable to that of Planck HFI

Frequency [GHz]

Balloon data representative of a space mission

Current/Pending Balloon Missions

Missions Flown	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
EBEX (2012/13)	0.2	150/250/410	8/5/5
Nobody (2013/14)			
Spider (2014/15)	0.1	94/150	42/28
Missions Planned	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
Piper (2016)	0.8	200	36
Spider (LDB 2017)	0.1	94-285 (3)	42-15
LSPE (Night 2017)	0.25	44-240 (4)	85-20
Missions in Prep.	survey area [sky fraction]	frequencies [GHz]	resolution [arcmin]
Piper (2017-2020)	0.8	200-600 (4)	36-12
EBEX-IDS	0.035	150-360 (7)	8-3
BFORE	0.23	270-600 (3)	4

Spider 2015: Overview

Sky coverage	About 10 %
Scan rate (az, sinusoid)	3.6 deg/s at peak
Polarization modulation	Stepped cryogenic HWP
Detector type	Antenna-coupled TES
Multipole range	10 < ℓ < 300
Observation time	16 days at 36 km
Limits on r [†]	0.03

[†] Ignoring all foregrounds, at 99% confidence

[‡]Including sleeve, window, and baffle

	Frequency [GHz]			
	94	150		
Telescopes	3	3		
Bandwidth [GHz]	22	36		
Optical efficiency	30-45%	30-50%		
Angular resolution* [arcmin]	42	28		
Number of detectors [†]	652 (816)	1030 (1488)		
Optical background [‡] [pW]	≤ 0.25	≤ 0.35		
Instrument NET [†] [μK·rts]	6.5	5.1		
*FWHM. †Only counting those currently used in analysis				

Spider 2015: survey coverage

PIPER and LSPE

PIPER (Goddard)
2 short duration flights/year
Northern + Southern = ~80% sky/year
4 years = 8 flights (2016-2020)
200, 270, 350, 600 GHz

Variable-Delay
Polarization
Modulators

Cold
Optics

3500 Liter
Bucket Dewar

LSPE (Rome)
25% sky/flight (Svalbard, Norway)
1st Flight: 12/2017
44, 90, 150, 240 GHz

PIPER and LSPE

PIPER (Goddard)
2 short duration flights/year
Northern + Southern = ~80% sky/year
4 years = 8 flights (2016-2020)
200, 270, 350, 600 GHz

LSPE (Rome)
25% sky/flight (Svalbard, Norway)
1st Flight: 12/2017
44, 90, 150, 240 GHz

S. Hanany

EBEX-IDS

- 7 bands: 150, 180, 220, 250, 280, 320, 360 GHz
- 1500 sq. deg. Co-observe with BICEP/Keck + Simmons Array
- Sinuous Antenna Trichroic Pixels (PB2, SPTPol, LiteBIRD)

Total of 20562 detectors

BFORE

The observational challenge:

A detection of primordial fluctuations must confirm:

- Spectral energy distribution
- Angular power spectrum
- Statistical isotropy

Experimental requirements:

- Extreme sensitivity [primordial signal < 100 nK_{rms}]
 (and control of systematic effects)
- Large survey area [signal is ≥ degree-scale]
- Multiple frequencies [as many as you can we don't know how many are needed…]

Balloon experiments are able to address all these, with data representative of a space mission.

The observational challenge:

The observational challenge:

SPIDER: Probing the early Universe with a suborbital polarimeter Fraisse, 6

Fraisse, et al. (2011) arxiv: 1106.3087

exhibit significantly less polarized dust emission. This study suggests that without component separation, degree-scale polarized dust emission will limit the constraints of any experiment at or above the level of $r \sim 0.03$, even in the portions of the southern sky most free of Galactic dust emission.

SPIDER: Probing the early Universe with a suborbital polarimeter Fraisse, 6

Fraisse, et al. (2011) arxiv: 1106.3087

exhibit significantly less polarized dust emission. This study suggests that without component separation, degree-scale polarized dust emission will limit the constraints of any experiment at or above the level of $r \sim 0.03$, even in the portions of the southern sky most free of Galactic dust emission.

Spider 2015: Foreground Estimates (thermal dust and synchrotron)

Spider 2015: flight performance

SPIDER: Probing the early Universe with a suborbital polarimeter Fraisse, 6

Fraisse, et al. (2011) arxiv: 1106.3087

exhibit significantly less polarized dust emission. This study suggests that without component separation, degree-scale polarized dust emission will limit the constraints of any experiment at or above the level of $r \sim 0.03$, even in the portions of the southern sky most free of Galactic dust emission.

