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CMB-S4 Stage 4 CMB experiment: CMB-54

Next Generation CMB Experiment

* A next generation ground-based program to pursue inflation,

neutrino properties, dark radiation, dark energy and new

discoveries.

* Greater than tenfold increase in sensitivity from Stage 3

to cross critical science thresholds.

* O(500,000) detectors spanning 30 - 300 GHz

using multiple telescopes and sites to map

most of the sky, as well as deep targeted fields.

* Broad participation of the CMB community,
including the existing CMB experiments,
National Labs and the High Energy Physics
community. International partnerships
expected and desired.

Building for Discovery
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CMB-54

Next Generation CMB Experiment

Measurements needed

Science goals require much improved CMB
polarization and CMB-lensing
- Inflation: B-mode polarization and de-lensing

- Neutrinos: Nett or “dark radiation” requires de-lensed polarization
spectra; > my requires CMB-lensing (and Te).

- Dark Energy: Galaxy survey correlation with CMB-lensing; SZ
cosmology from high-¢ TT with CMB-lensing mass calibration

and CMB-lensing requires much improved CMB
polarization.

— we need CMB polarization!



CMB-S4| Detectors are a big challenge,

Next Generation CMB Experiment
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but it will take much more to achieve our goals.



CMB-S4 | what’s needed to realize CMB-S4

Next Generation CMB Experiment

* Scaling up:

- detectors, focal planes

sky area and frequency coverage

multiple telescopes; new designs

computation, data analysis, simulations

project organization, management

e Systematics:

- improved control, especially of
foreground mitigation

e Theory/phenomenology:

- Increased precision for analysis; new methods

High throughput crossed
Dragone optical design.
Neimack arXiv:1511.04506

Scale of CMB-54 exceeds capabilities of the University CMB groups.

-> Partnership of CMB community and National labs will do it.



Cosmic Frontier Highlight:
CMB-S4 Collaboration Workshop

As recommended by P5, HEP is planning to participate
in a CMB Stage 4 (CMB-54) experiment

— HEP will coordinate efforts within HEP program and
consider possible HEP roles

—  Will work with NSF to coordinate planning and a path
forward

Cosmology with CMB-54 Collaboration Workshop was
held March 7-9, 2016, at LBNL

— 180 participants
— Produced first draft Science Book (149 pages)
e https://cosmo.uchicago.edu/CMB-S4workshops/index.php/Main Page

Community-based planning aiming towards ground-based experiment to:
— Gaininsight into the inflationary epoch
— Probe dark energy and neutrino properties from CMB lensing
— Map B-mode polarization power spectrum
— Probe high energy environment of early universe

Notional CMB-S4 experiment is array of several telescopes with on the
order of 0.5 M detectors total in Chile and South Pole

— Involving ANL, FNAL, LBNL, SLAC, universities
— Partnership may include NSF-AST, NSF-PLR, NSF-PHY, international

agencies
— Technology ready, but needs scale-up of detector fabrication, testing, and
readout . _ . _ Prototype Large Aperture Telescope
— Cost models under development with considerations for possible design with 10x mapping speed
international contributions improvement (Niemack 2016)

EERY, U.S. DEPARTMENT OF i . . . .
ENERGY g;fis:;f Jim Siegrist presentation: HEP Program Status at HEPAP - 3/31/2016 | 27
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Cosmic Frontier Highlight:
CMB-S4 Collaboration Workshop

As recommended by P5, HEP is planning to participate
in a CMB Stage 4 (CMB-54) experiment

— HEP will coordinate efforts within HEP program and

consider possible HEP roles

—  Will work with NSF to coordinate planning and a path
forward

Cosmology with CMB-54 Collaboration Workshop was
held March 7-9, 2016, at LBNL
— 180 participants
— Produced first draft Science Book (149 pages)
* https://cosmo.uchicago.edu/CMB-S4workshops/index.php/Main_Page

Community-based planning aiming towards ground-based experiment to:
— Gaininsight into the inflationary epoch
— Probe dark energy and neutrino properties from CMB lensing
— Map B-mode polarization power spectrum
— Probe high energy environment of early universe

Notional CMB-S4 experiment is array of several telescopes with on the
order of 0.5 M detectors total in Chile and South Pole

— Involving ANL, FNAL, LBNL, SLAC, universities

— Partnership may include NSF-AST, NSF-PLR, NSF-PHY, international
agencies

— Technology ready, but needs scale-up of detector fabrication, testing, and

: : - . Prototype Large Aperture Telescope
— Cost models under development with considerations for possible design with 10x mapping speed
international contributions improvement (Niemack 2016)
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Polarization status and future challenge
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CMB lensing - also
great progress, and
also a long, long way
to go
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Nerr & Helium fraction degeneracy
Artificially keep B4 constant by increasing helium fraction, Yp
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Nerr & Helium fraction degeneracy

Planck Collaboration XllI (2015)
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- Agreement with physics of

1) Cosmic neutrino
background at ~1 sec

2) Light element
production at ~3 min

3) CMB emitted at
~380,000 years

 But we’d like to do much
better !

Nett = 3.15 £ 0.23 (along BBN consistency curve)
Nett = 3.14 £ 0.44 (marginalizing over Yp)
Highly significant detection of neutrino background

11
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- Agreement with physics of

1) Cosmic neutrino
background at ~1 sec

2) Light element
production at ~3 min

3) CMB emitted at
~380,000 years

 But we’d like to do much
better !

need de-lensed
polarization spectra

Nett = 3.15 £ 0.23 (along BBN consistency CUrve
Nett = 3.14 £ 0.44 (marginalizing over Yp)

Highly significant detection of neutrino background
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Matter power spectrum
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Cosmological Neutrino Mass Constraints
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Planck Collaboration Xlll (2015)

CMB alone:

2my < 0.59 eV at 95% c.l.
Including other
cosmological data:

2Mmy < 0.23 eV at 95% c.l.

Joint Xmy and Nes fit;

Ner = 3.2 £ 0.5
Smy < 0.32 eV} 95% c.l.



Cosmological Neutrino Mass Constraints
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CMB alone:

2my < 0.59 eV at 95% c.l.
Including other
cosmological data:

2my < 0.23 eV at 95% c.l.

Joint Xmy and Nes fit;

Ner = 3.2 £ 0.5
Smy < 0.32 eV} 95% c.l.

Full potential of CMB lensing and

best Nett and Zmy constraints
require better polarization data

Planck Collaboration Xlll (2015)




Moving CMB-54 forward
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Community coming together to refine the science goals
and instrument definition. Science Book in progress
(https://cosmo.uchicago.edu/CMB-S4workshops)




CMB-S4 | strawman cMB-S4 specifications

Next Generation CMB Experiment

e Surveys:
- Inflation, Neutrino, and Dark Energy science requires optimized surveys using a
range of resolution and sky coverage from deep to wide.

e Sensitivity:

- ~1 uK-arcm over =70% of the sky, and considerably deeper on targeted fields.

e Configuration:
- 0(500,000) detectors on multiple telescopes,

- spanning ~ 30 - 300 GHz for foreground mitigation

 Resolution:
- exquisite low-¢ and high-¢ sensitivity for inflationary B modes with delensing

- arc minute for CMB lensing & neutrino science

- higher resolution improves sensitivity to dark energy, gravity tests, mapping
the universe in momentum with SZ effects, and ancillary science.

15



CMB-S4 Angular range of CMB-54

Next Generation CMB Experiment
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CMB-S4 De-lensing B-mode Polarization

Next Generation CMB Experiment

De-lensing Improvement on ofr)
vs Angular Resolution
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CMB-54

Next Generation CMB Experiment

- Ground: Resolution
required for CMB lensing
(+de-lensing!), damping
tail, clusters....

- Space: All sky for
reionization peak; high
frequencies for dust.

- Combined data from
would provide best
constraints. Duyst
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initial Snowmass projection of

CMB-S4 Inflation reach of CMB-54

Next Generation CMB Experiment

Current limit (CMB+BAO)
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) Example of optimization | projection
NCtGM%BESp4t of inflation reach of CMB-54
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BPCM (Bandpower Covariance Matrix) optimization of

- 8 CMB-54 frequency bands: 30, 40, 85, 95, 145, 155, 215 & 270GHz

- 13 model parameters (including FG correlations and dust spectral power law index scatter)

- fraction of effort with arc minute telescopes and degree scale telescopes by V. Buza, C. Bischoff & J. Kovac




) Example of optimization | projection
NCtGMt%BESp4t of inflation reach of CMB-54

Consider fsky = 3% survey usmg half the power of CMB-S4
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- 8 CMB-54 frequency bands: 30, 40, 85, 95, 145, 155, 215 & 270GHz

- 13 model parameters (including FG correlations and dust spectral power law index scatter)

- fraction of effort with arc minute telescopes and degree scale telescopes by V. Buza, C. Bischoff & J. Kovac



) Example of optimization | projection
NCtGMt%BESp4t of inflation reach of CMB-54

Consider fsky = 3% survey usmg ALL the power of CMB-S4
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CMB-54

Next Generation CMB Experiment

Projected CMB-S4 N.f - 2my constraints
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CMB-S4 Neri: thermal relics

Next Generation CMB Experiment

QCD phase
transition
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Green, Meyers CMB-S4 Science Book draft (https://cosmo.uchicago.edu/CMB-S4workshops)
Also Baumann, Green & Wallisch, “A New Target for Cosmic Axion Searches” arXiv:1604.08614 24



https://cosmo.uchicago.edu/CMB-S4workshops

Complementarity of Cosmic Neutrino Constraints
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“use cosmology to
tighten the noose”
- Boris Kayser
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Cosmic Nett and 2my constraints also complement
Short Baseline Neutrino experiments and

Neutrinoless Double Beta Decay experiments
arXiv:1309.5383



CMB-54

Next Generation CMB Experiment

CMB-54 lensing will complement
large optical surveys such as DES,
DESI, LSST, Euclid, WFIRST, etc.

The combination leads to better
shear-bias calibration and more
robust constraints on Dark Energy
and the properties of neutrinos.

10® w*8 (¥9), SPT

(e.g., Das, Errard, and Spergel, 2013)

Giannantonio et al., 2016, beginning

of CMB lensing tomography
using 3% of DES survey
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CMB-54

Next Generation CMB Experiment

CMB-S4 SZ cluster projections
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CMB-S4 Sunyaev-Zel’dovich
(SZ) Cluster Survey:

e Cluster counts will depend on
designed beam size, roughly:

* 1. 140,000 clusters

e 2’:. 70,000 clusters

* 3’: 45,000 clusters
e Strong complementarity with
LSST cluster survey:

* Low scatter observable

* High-redshift: >10,000 clusters
atz>1

CMB-lensing cluster mass
scaling !

o(M) ~2e13 at z> 1 per 1000
clusters




CMB_S4 Telescopes at Chile and South Pole and
Next Generation CMB Experiment pOSS|ny Northern SlteS (eg, leet, Greenland)

Planck 353GHz polarized intensity map
in celestial coordinates
(color scale 0-100uK)
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Figure from Clem Pryke .



Greatly enhance DES, DESI and LSST
science by overlapping coverage

CMB-S4

Next Generation CMB Experiment

+  MS-DESI o5 2 MS-DES|
| - MS-DESI

Chile
LSST observable
sky
o Sh AW 000909090

South Pole &
observable 24/7/52

0.0 —— S — 0.10 mK RJ
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Figure from Jeff McMahon 29



Ongoing and upcoming South Pole CMB experiments
Stage 1" &2 1)
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Ongoing and upcoming Atacama CMB experiments
(Stqge [1- 82 1iT)
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CMB-54

Next Generation CMB Experiment

Collaboration

- Community — university and labs — working very well together
on Science Book and on path toward instrumentation choices.

- Interactions with DOE through DOE’s CMB Cosmic-Vision
group

- NSF responds to proposals. NSF interactions with CMB-S4
through their award Pl’s

- Addressing issues on nature of project organization
- bottoms up versus top down
- maintain constructive competition between sites?

- Proceeding with formation of formal collaboration and formal
CMB-S4 project

32



CMB-54

Next Generation CMB Experiment

Last words

CMB-S4 will be a great leap for cosmology and
astrophysics. CMB is the gift that keeps on giving.

The science is spectacular. We will be searching for
inflationary gravitational waves and rigorously testing
single field slow roll inflation, determining the neutrino
masses, searching for new relics, mapping the
universe in momentum, investigating dark energy,
testing general relativity and more.

The community is behind CMB-S4 and we are moving
forward.

33



CMB-S4 extra slides

Next Genera tion CMB Experiment




Snowmass CMB-S4 N.g - 2my constraints
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CMB-$4 forecast: arXiv:1309.5383; see also Wu et al, Ap] 788,138 (2014)
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CMB-54 lensing sensitivity to 2my,
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need T. measurement

~.—  WMAP-pol + S4(£ > £min) + DESI
30 __ Planck-pol + S4(¢ > ¢,,,,) + DESI

Allison et al arXiv:1509.07471



“Pessimistic” V degeneracy forecasts
Allison et al., 1509.0747

for CMB-S4 (3 arcm res, ¢ > 20) + DESI BAO:

2my =19 meV (NCDM + 2m,)
= 30 meV (ACDM + Zm, + Q)
=27 meV (ANCDM + 2Zm\y + wo)
=46 meV (ANCDM + Zmy + wo + wg)
=64 meV (ANCDM + Zm, + wo + wq + Q)



“Optimistic” V forecasts
Pan & Knox 1506.07493
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Complementarity of Neutrino mass constraints

INVERTED HIERARCHY
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FIG. 1: Projected constraints on neutrino parameters from
upcoming cosmic surveys (vertical), neutrino-less double beta
decay experiments (horizontal), and all other current mea-
surements (gray) assuming an inverted mass hierarchy and
Majorana neutrinos.
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FIG. 3: If the mass hierarchy is normal but the sum of the
masses is still relatively large, for example at the value indi-
cated by the star, then there will be a lower limit on mgg, a
target for ambitious future double beta decay experiments.

Dodelson and Lykken arXiv:1403.5173
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Big Data & High Performance Computing

® Ground
Balloon
1 Satellite

® Supercomputer

LOG ( DATA VOLUME )
LOG ( PEAK FLOP/S)

EPOCH

Exponential data growth tracking Moore’s Law



First start of CMB lensing tomography

3% of DES survey (science verification data)

Galaxy auto-correlation Galaxy-CMBIlensing cross-correlation
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CMB lensing and optical surveys

CMB lensing reconstruction of mass
maps sensitive to growth of structure,
probe neutrino mass

CMB lensing will complement large
optical surveys such as DES, eBOSS,
LSST, DESI, Euclid, WFIRST, etc.

The combination leads to better
shear-bias calibration and more
robust constraints on Dark Energy
and the properties of neutrinos. (e.g.,
Das, Errard, and Spergel, 2013)

Correlation of matter traced by CMB lensing
(contours) and distribution of high z galaxies
(grayscale; Herschel 500 um)



