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C-BASS - Overview

Sky-coverage All-sky

Angular resolution 0.73 deg (43.8 arcmin)

Sensitivity < 0.1mK r.m.s (confusion limited in I)

Stokes coverage I, Q, U, (V)

Frequency 1 (0.7) GHz bandwidth, centered at 5 

GHz

Northern site OVRO, California

Latitude, 37.2 deg

Southern site MeerKAT site, Karoo, South Africa 

Latitude -30.7 deg



C-BASS

Main Aim:  understanding the physics of the very early Universe

Planck high-frequency mission to map 

the cosmic microwave background 

(CMB),  30-800 GHz

CBASS provides essential 

low frequency data, 5 GHz

• CMB polarization 

encodes fundamental 

physics of the beginning 

of the Universe.

• Planck CMB maps 

contaminated by Galactic 

emission.

• C-BASS enables 

cleaning of Galaxy from 

Cosmic Microwave 

Background (CMB) 

maps.

• Combine both data sets 

to get clean maps of the 

CMB polarization.



5 GHz because…

• Halfway (in log ) between surveys at 1.4 GHz (Stockert, Reich & 

Reich) and 23 GHz (WMAP).

• Expected high-latitude Faraday rotation a few degrees, c.f. ~30° at 

2.3 GHz.

• Below main emission from anomalous dust, so predominantly 

synchrotron.

• Signal still strong enough (few mK) to measure in a reasonable time  

(< 1 year) with a single receiver.

• ‘Planck 5 GHz channel’ (© R Davis)



Why a 5 GHz survey?

Intensity



Why a 5 GHz survey?

Polarization



C-BASS North Telescope

• 6.1-m dish, with Gregorian optics 

• Secondary supported on foam cone

• Receiver sat forward of the dish

• Very clean, circularly-symmetric optics

• Absorbing baffles to minimize spillover



C-BASS North: beam measurements

Simulated

Measured

Sidelobe 

‘disappears’ with 

addition of baffles

(see Holler et al. 2011, arXiv:1111.2702v2 )



C-BASS North Receiver 

• Analogue correlation polarimeter

• Correlate RCP & LCP  Q, U

• Continuous comparison/pseudo-correlation radiometer

• Difference RCP & LCP separately against internal load  I, V



Receiver noise power spectra

C-band LNAs intrinsic 

fknee ~1 Hz:

Intensity channel, 

balanced fknee ~ 30 mHz

Polarization  fknee ~ 10 

mHz

No polarization 1/f 

receiver noise at fscan = 

11 mHz



C-BASS North Site (1)



C-BASS North Site (2)

Before installation of notch filter (in-

band) and second bandpass filter 

Q

I

I

Q

After installation of extra filters



• CBASS South at Klerefontein, Karoo 

desert, South Africa (SKA support 

site)

• 7.6m ex-telecoms dish

• Cassegrain optics

• Similar receiver to north – but 

frequency resolution (128 ch)

C-BASS South Telescope



C-BASS South Receiver

• Digital correlation polarimeter – two down-converted channels of 500 MHz 
sampled in 1st and 2nd Nyquist zones

• 2 x ROACH FPGA board each with 4 x 1 GS/s ADC inputs

• 64-channel spectrometer per ROACH -- 128 channels in total, Δν=0.7GHz

~
4.5 GHz

~~~
~~~

iADC/

ROACHiADC/

ROACH

1 GS/s

0-500 MHz

500-1000 MHz



Survey Parameters
• 360° scans at constant elevation.

• Deep NCP scans for check of 
systematics.

• Survey data at several elevations  
– Through NCP

– Through NCP + 10, 20, 30… °

• Scan speed of 4 deg/s → scan in 90s
– Need  fknee < 11 mHz  

• Pointing and opacity and flux calibration 
every 2 hours.

• Continuous gain monitoring via noise 
diode injection.

Simulation of elevation scans through NCP 

and SCP.

• Daytime only for 24 months.

• Random drop-outs added.

• Very good coverage at poles and overlap 

region.

•

Figure 8: Simulated southern data combined with northern observat ions, I sensit ivity maps with pixels

above threshold values masked out . The thresholds are 1, 0.8, 0.78, 0.7, 0.6, and 0.4 mK in descending

rows. The columns are SUN45 and NIGHT cuts on the data.
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Removal of ground pick-up

1 day map without ground subtraction

1 day map after ground subtraction

I

Q

U

30 days of ground templates



Sutton et al MNRAS 

2010, 407, 1387

Descart Destriping Mapper

• Model timestream as sum of:

Signal projected by pointing P

1/f  noise modeled by baseline offsets a

purely white noise w

• Solve for a with conjugate gradient 

and subtract to make problem 

purely white noise



Sutton et al MNRAS 

2010, 407, 1387

Descart Destriping Mapper

• Optimized parallel de-striping code

• Performs a maximum-likelihood fit to the correlated noise 

in the timestream:

Data  = Signal +  uncorrelated white noise + offsets

• Solves for the offsets and subtracts.

Residuals for naïve (simply binned) map Residuals for destriped map



CBASS-N I



CBASS-N P



408 MHz - 5 GHz – 23 GHz



CBASS-S I (very early data!)



NCP - components

408 MHz –

synchrotron?

WMAP 23 GHz –

synchrotron + 

AME

CBASS 5 GHz 

- synchrotron

IRIS 100 mm –

thermal dust



CBASS - data

• Reducing Northern data now – observations 

finished

• Staged publications -> data release

• Southern survey starting ~now. 

• 2 yrs data taking expected in south

• Full data release once surveys completed and 

combined…

• …and project team has published a few papers!



Expected improvements in component fitting

Parameter Without C-BASS With C-BASS True Value Units 

synch_beta -3.369 ± 0.559 -3.268 ± 0.357 (-3.1) 

synch_amp 16.64 ± 2.94 16.03 ± 2.43 (16.58) [K] 

ff_EM 139.9 ± 42.8 154.0 ± 6.4 (152.0) 

ff_Te — 7000 —

sd1_amp 81.07 ± 30.48 87.73 ± 10.64 (85.52) [uK] 

sd1_fPeak 16.10 ± 14.46 13.14 ± 1.77 (13.46) [GHz] 

dust_amp 231.8 ± 12.66 230.7 ± 11.6 (232.2) [uK] 

dust_beta 1.587 ± 0.087 1.577 ± 0.078 (1.591) 

cmb_amp 75.45 ± 5.60 74.09 ± 3.42 (75.00) [uK]

Fitting for components from Haslam + WMAP + Planck (+CBASS):

Synch beta error down 35%

Synch amp error down 20%

FF amp error down by factor 6.7

AME amp error down by factor 3

AME peak freq error down by factor 8

CMB amp error down by 40%

Results vary a lot over the sky 

with different amplitudes of 

various components

Real analysis (COMMANDER) 

under way now…



Next-BASS?

• Still not enough measurements to constrain all likely 

foreground components

– .408 – 5 – 23 – 30: 4 measurements,  vs

– Synch with curvature/self-absorbtion (5-6 params) – free-free 

(2) – AME with multiple components (3-4?): 10-12 params

• Ideally fill in complete frequency space between C-BASS 

and satellite frequencies: 6 – 25 GHz or higher.

• Sensitivity at least equivalent to CMB experiments at 

~100 GHz: 1 mK-arcmin x frequency lever-arm 

• Resolution at least as good as C-BASS: ~6 m telescope

• High frequency resolution for RFI/line emission removal 



Next-BASS?

• 6-m aperture Compact Range 

antenna (aka Crossed Dragone)

– Large focal plane

– Easy to completely shield

• C-BASS-style 

radiometer/polarimeter for 

stability

• Two feed types

– 6 – 12 GHz

– 12 – 24 GHz

• Digital backend based on SKA 

designs



Next-BASS?

• C-BASS equivalent sensitivity at  100 GHz = 0.05 mK-

arcmin with b = 3

• Minimum number of feeds to achieve 1 mK-arcmin: 
(assuming 20% bandwidth)

• Eg 1 – 3 feeds 6-12 GHz

• ~30 feeds 12-24 GHz

• Running detailed sims to 

see where the constraining 

power really lies
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