

The University of Manchester

CMB Foregrounds: Just how bad are they?

Clive Dickinson

Jodrell Bank Centre for Astrophysics The University of Manchester

Towards a next space probe for CMB observations and cosmic origins exploration, CERN, 17-20May 2016

CMB foregrounds

Foregrounds are everything between the CMB (last scattering surface at z=1090) and the detectors!

Foregrounds are fun! (for some of us)

Foregrounds are interesting in themselves - astrophysics!

- Physical emission mechanisms
- Galactic structure
- Galactic magnetic field
- Interstellar medium (density, temperature...)
- Star formation
- Extinction
- Astrochemistry
- Galaxy formation
- Large-scale structure

Astrophysical knowledge can inform CMB component separation

The WMAP/Planck Microwave haze: Relativistic electrons outflowing from the Galactic Centre Planck Collaboration, 2013, Int results, XI

Detection of spinning dust grains Planck Collaboration, 2011, A&A, 534, A20 (XX)

Galactic foregrounds

Planck Collaboration, 2015, arXiv:1502.01588

- Galactic foregrounds dominate on large angular scales (>~1 deg)
- Total intensity appear to be more complicated than polarisation!
 - BUT, CMB window at ~40-200 GHz range for some areas of sky and on medium (~1 deg) scales
 - Foreground minimum at ~80 GHz
- Polarization <u>might</u> be less complicated but requires higher precision (CMB weaker)
 - Foreground minimum at ~70 GHz

Synchrotron radiation

- Relativistic cosmic ray electrons accelerating in Galactic magnetic field
 - CR energy spectral index p~3.0 at GeV energies
- Integration of power-law distribution of Larmor law gives another power-law
 - Synchrotron spectral index $\beta \sim -2.7$ +/- 0.2 at $\sim 1~GHz$
- Synchrotron radiation dominates at low frequencies

408 MHz all-sky map (Haslam et al. 1982) Remazeilles et al. (2015): new version with better destriping & desourcing Synchrotron spectral indices are not very accurate Low freqs: data quality (systematics) High freqs: component separation

Dickinson et al. (2009)

Synchrotron at CMB frequencies

- High energy electrons lose energy more quickly (spectral ageing):
 - β~-3.0 +/- 0.1 above ~5 GHz
 - -> Curved synchrotron spectrum
- Relatively weak at frequencies above ~30 GHz
 - Except bright supernova remnants and radio galaxies (bright up to 100+ GHz)
- No strong hard (β ~-2.5) synchrotron emission outside of Galactic plane/centre region
- But requires high sensitivity and high fidelity
 ~5-15 GHz data to be sure!...
 - Accurate spectral index extrapolation
 - Flat spectrum components at high frequencies?

WMAP

41 GHz

Polarised synchrotron radiation

- Dominates polarised sky up to ~70 GHz !
- Up to 70% polarised (theoretically)
 - ~40-50% max observed
 - ・~20% typical
- Steep spectrum β~-3.05+/-0.1
- Low frequencies (< few GHz) corrupted by Faraday Rotation
- WMAP 23 GHz/Planck 28.5 GHz only good templates so far

Synchrotron polarisation fraction (Planck Collaboration, 2015, arXiv:1506.06660)

0.0

70.0 %

Polarised synchrotron radiation

- Large-scale power from Galactic plane and several "loops/spurs"
 - Highly polarised
 - Cover large fraction of the sky!
 - May be responsible for bulk of synchrotron radiation!

Planck Collaboration, 2015, arXiv:1506.06660

C-BASS

- Collaboration:
 UK (Manchester/Oxford),
 U.S. (Caltech/JPL),
 South Africa (Rhodes, UKZN),
 Saudi Arabia (KACST)
- Full-sky 5 GHz I/Q/U survey at 45 arcmin resolution, <0.1mK rms noise, with good calibration and minimal systematics
- Careful attention to design details
 - Carefully balanced correlation receiver to reduce 1/f noise
 - Lowest noise C-Band low noise amplifiers
 - RFI notch filters
 - Foam cone support to reduce scattering
 - Under-illuminated low sidelobe matched beams
 - Absorbing baffles around reflectors
 - Fast scanning (4deg/s)
 - Digital spectral backend (Southern instrument)

California

South Africa

Sky-coverage	All-sky
Angular resolution	0.73 deg (43.8 arcmin)
Sensitivity	< 0.1mK r.m.s
Stokes coverage	I, Q, U, (V)
Tsys	~20K, including sky
Frequency	1 (0.7) GHz bandwidth, centered at 5 GHz
Northern site	OVRO, California Latitude, 37.2 deg
Southern site	MeerKAT site, Karoo, South Africa Latitude -30.7 deg

Preliminary C-BASS maps

Stokes I map

For first results on the Galactic plane see Irfan et al. (2015), arXiv:1501.06069 More results coming soon!

Polarised intensity map

C-BASS South now coming online! (delays due to lightning storm damage, compressor failure, local RFI...) VERY raw and preliminary I map (virtually no calibration/data editing)

Free-free radiation

Free-free spectrum $\alpha \approx -0.1$

- Electrons accelerating in ionised gas by Coulombic interactions (thermal bremsstrahlung)
- At radio/microwave/sub-mm frequencies, very close to power-law with flatter spectrum:
 β=-2.1 +/- 0.02
- H-alpha maps used as template/predictor
 - Weak at high latitudes: $\Delta T \sim 10-20 \ \mu K$ at 30 GHz
- Intrinsically unpolarised

Full-sky dust corrected Halpha map

Full-sky Ha map corrected for dust extinction (Dickinson, Davies, Davis 2003)

M42 Orion Nebula spectrum (Planck Collaboration, 2011, Early Paper XX)

Anomalous Microwave Emission (AME)

Adapted from Leitch et al. (1997)

- Additional foreground detected at frequencies ~10-60 GHz (Kogut et al. 1996; Leitch et al. 1997)
 - Cannot easily be explained by synchrotron/free-free/CMB emission mechanisms
 - Strongly correlated with far-IR (~100µm) thermal dust emission
 - Steeply falling spectrum above ~30 GHz
 - Relatively low level of polarisation (few % or less)
- AME has been detected by many experiments

AME at high Galactic latitudes

- Still debate about diffuse AME at high Galactic latitudes
 - Spinning dust?
 - Flat spectrum synchrotron?
 - Magnetic dust?
 - Hot bremsstrahlung
 - Quantum dust
 - •
- Difficult to separate the (relatively weak) _{0.} diffuse components and CMB!
 - N.B. AME may be the dominant foreground at 20-60 GHz !
- Best explanation is electric dipole
 radiation from ultra-small rapidly <u>spinning</u>
 <u>dust</u> grains (Draine & Lazarian 1998)

oreground template component separation of WMAP data Davies et al. (2006)

AME polarization constraints

- Observations of Galactic AME clouds
- Upper limit of a few % at 30 GHz
 (e.g. Dickinson, Peel, Vidal et al. 201)
- Diffuse AME more difficult due to component separation and weak signals
 - Appears to be similar (<~5%)
 - Kogut et al. (2007); Macellari et al. (2011 Planck Collaboration 2015 XXV arXiv:1506.06660)

Rubino-Martin et al. (2012)

Thermal fluctuations of magnetic dust

- Much of Fe could be in magnetic material (metallic Fe, magnetite, maghemite etc.)
- Oscillations in magnetization -> magnetic dipole radiation
- Finite temperature -> thermal magnetic dipole (MD) emission
- Detailed predictions depend very much on form of Fe
 - Draine & Lazarian (1999),
 Draine & Hensley (2013)
- Black-body-like spectrum
- No hard evidence for MD although several hints!
 - Flattening of sub-mm index
 - Excellent fit to SMC with plausible physics
 - Slight decrease in dust polarisation at ~100 GHz and below

Ferromagnetic lattice with spins aligned Thermal fluctuations will move them away producing dipole radiation

Magnetic dust polarization

- MD could be highly polarised (up to 35%)!
- Several hints of MD being significant in both intensity and polarisation

Thermal dust radiation

- Dust grains ubiquitous throughout interstellar medium, absorbing UV
 - T~10-100K
- Black-body radiation but with opacity effects at lower frequencies
 - Often modelled as a modified black-body radiation

$$I_{\nu} = \tau_{\nu_0} B_{\nu}(T_{\text{obs}}) \left(\frac{\nu}{\nu_0}\right)^{\rho_{\text{ob}}}$$

- Spectrum peaks in far-IR (~100um/3000GHz)
 - Rayleigh-Jeans tail at sub-mm wavelengths (hundreds of GHz)
 - T~15-30K, <T>=19.6 K
- Dominant foreground above ~100 GHz
- Theory/lab analyses suggests $\beta \sim +2.0$
 - Planck data strongly prefers $\beta \sim +1.5-1.6$ with significant variations

Polarized Dust

- Dust grains are aspherical, charged and rotating
- Magnetic field aligns the grains -> polarization
- Until Planck, very few observations
- Archeops balloon experiment found ~3-5% polarisation on average at 353 GHz (but very noisy and limited sky area)

Archeops polarisation (Q) map Benoit et al. (2004); Ponthieu et al. (2005)

Image courtesy of F. Boulanger

Planck thermal dust polarisation map

Planck Collaboration 2015 results

Line Integration Convolution algorithm used to show intensity and magnetic field direction Very complicated! (magnetic field, depolarization, turbulence...)

Polarized Dust

- Planck has mapped large-scale dust polarisation but limited S/N at high latitudes
- Emissivity index similar (but not the same) as total-intensity: $\beta{\sim}{+}1.6$ with significant variations
- Tentative evidence of flattening at sub-mm frequencies (70-350GHz)
- Also slight reduction in polarisation fraction at \sim 70-100 GHz ?
 - Multiple dust components/decorrelation or magnetic dipole radiation at ~100 GHz ?
 - Could be a problem for sensitive CMB polarisation measurements

Planck Collaboration, 2015, Int. Results XXII, A&A, 576, A107

Polarization fraction of thermal dust

- Polarization fractions generally higher than previously thought
- Up to ~20+% in some areas
- Average value ~10% at high latitudes
- Lower column density lines-of-sight (high latitude) typically higher!
 - Bad for CMB studies!

Polarization Fraction

Planck Collaboration, 2015, Int. paper, A&A, 576, A104

Polarized Dust power

Angular scale where EE dust power = Planck noise

60' 30' 15' 5'

Power spectrum well-described by power-law with **slope=-0.42**

Planck Collaboration, Int. results, 2015, A&A, paper XXX

Large-scale B-modes vs foregrounds

- Minimum at ~60-100 GHz depending on angular scale
- Minimum at ~70 GHz for large-scale B-modes

B-mode satellite concepts all aiming for $r \sim 10^{-3}$

Spectroscopy

Mission

Sun-Spacecraft Axis

Sensitivity of B-mode satellite concepts

« Because of much larger sensitivity of future CMB space mission, the estimation of the tensor-to-scalar ratio will be much more sensitive to imperfect foreground modelling »

Remazeilles, Dickinson, Eriksen, Wehus, MNRAS 2016

See also Errard et al. (arXiv:1509.06770)

Impact of mis-modelling synchrotron: neglecting index curvature

Remazeilles, Dickinson, Eriksen, Wehus, MNRAS 2016

Impact of mis-modelling synchrotron: neglecting index curvature

Remazeilles, Dickinson, Eriksen, Wehus, MNRAS 2016

CIB polarization

- Cosmic Infrared Background (CIB) dusty IR galaxies across the Universe (mostly $z \sim 1-4$)
 - Correlated by large-scale structure (clustering)
 - Significant power on deg scales
- Thermal dust polarisation very small for individual galaxies ($\sim 1\%$?)
 - e.g. Arp 220 upper limit (Seiffert et al. 2007)
- Expect polarisation to largely cancel out on average (random orientations)
- **BUT**, variance will not cancel!
 - Polarised CIB could be important for future **CMB** polarisation missions!

Planck Collaboration (2011), 536, A18

CIB (clustering contribution)

Planck Collaboration 2013 Results XXX (arXiv:1309.0382)

Conclusions

- CMB TT: foregrounds generally not a major issue any more, except possibly at very high-l
- CMB TE/EE: foregrounds an issue, but under control with careful masking and fitting
- CMB BB: foregrounds definitely an issue.
 - How far we can go depends on details of polarised foreground characteristics
 - Utilise as many frequency channels and range as possible
 - Minimum is at ~70 GHz (on large scales)
 - Low frequencies (<~20 GHz) can be done from the ground (e.g. C-BASS)
 - Future CMB polarisation space mission will need flexibility
 -> lots of frequency channels!
- Component separation will be even more critical for many areas of cosmology in the future!
 - Similar problem for HI/CO intensity mapping