Simulation Plans

Paolo Natoli Università di Ferrara and INFN

Mark Ashdown
University of Cambridge

Context

- 1. At this level, simulations are useful to:
 - Provide science forecasting activities with (more) realistic synthetic data, in terms of analysis tools and content (e.g., systematics
 - b. Provide an assessment of the goodness of a configuration assuming a model of the instrument and a model of the sky. This information could feed the proposal or (perhaps) be set forth in a devoted ECO paper.
- 1. At a broader level, simulations are essential to support data analysis, in providing biases and covariances for estimators, for error budged of all sorts (statistical and systematic).
 - a. These are end-to-end simulations. There is plenty of expertise for this approach in Planck and other CMB experiments

The CoRE++ simulation group

- 1. About 60 people in the email list (join if you wish!). Coordinated by P.N. and Mark Ashdown
- 2. Holds regular telecons (weekly-ish, Thursday at 16 CET). On wiki: coresat.planck.fr/index.php?n=E2ESims.E2ESims

The CoRE++ simulation group

- 1. About 60 people in the email list (join if you wish!). Coordinated by P.N. and Mark Ashdown
- 2. Holds regular telecons (weekly-ish, Thursday at 16 CET).
- 3. We held a dedicated meeting in Bologna on 28-30 April (jointly with foreground group). Presentations are on wiki: http://coresat.planck.fr/index.php?n=Main.2016-04-28Amp29

The CoRE++ simulation group

- 1. About 60 people in the email list (join if you wish!). Coordinated by P.N. and Mark Ashdown
- 2. Holds regular telecons (weekly-ish, Thursday at 16 CET).
- 3. We held a dedicated meeting in Bologna on 28-30 April (jointly with foreground group). Presentations are on wiki.
- 4. One output of the meeting was to agree on a common simulation framework and a simulation plan.

Common infrastructure for simulations

- 1. First thing was to agree on a shared simulation level. This is provided by C³ (Berkeley). See Julian Borrill's morning talk.
 - a. Provides a scripting interface (python) to generate products
 - Provides explicit interface to call libraries from within other codes
 - c. Provides a robust, customizable destriper (madam) to generate maps
 - d. Does not provide at the moment explicit timeline/pointing information to disk.
 - e. Provides Monte Carlo capabilities (CMB signal, noise)
 - f. Documented and "available" from github (at least for us)

Sky model

- 1. Sky model is based on Planck sky model, which is an improving project
- 2. See Jacques Delabrouille's talk tomorrow.

The work plan

- 1. Map making validation
 - a. How effectively can we reconstruct polarization without HWP?
 - b. Aim at single-detector maps
 - c. Assess noise performance for various strategy via MC analysis
- 2. Cross-correlated noise (cross-talks)
 - Evaluate impact for toy-model. Assess improvement with dedicated treatment (devoted GLS map-maker)
- 3. Band-pass mismatch
 - a. Assess vulnerability to multi-detector map making
- 4. Non symmetric beams
 - a. Correct for leakage both at map harmonic (power spectrum) level
- 5. Correct for toy model of "timeline" systematic (e.g. thermal in origin)
- 6. Other issues to consider: pointing error (second error), glitches

Map making validation

- 1. Two configuration studied for LiteCOrE (at 120 cm aperture, 0.5 and 1 rpm spin), plus one for LiteBird (with HWP)
- 2. Single detector at boresight (for the moment)

LiteCoRE fast

LiteCOrE slow

Precession period = 4 days Spin rate = 1rpm 4 hits per beam: samplerate = 175.86 Hz

Precession period = 8 days Spin rate = 0.5rpm 4 hits per beam: samplerate = 87.93 Hz

Common: 200 Hz 1/f knee, slope = 1, precession angle = 50° , spin angle = 45° , NET = $52.3~\mu K \cdot \sqrt{s}$, 5.79° FWHM (150 cm aperture)

LiteBird

,

NET = 60 µK ·√s
Knee frequency = 50 mHz
Slope = 1
Sample rate = 23 Hz
HWP rotating at 88 rpm
Precession opening angle =
65°
Spin opening angle = 30°
Precession period = 93 rminutes - Simulation plans - CERN 16

Spin period = 10 minutes

3x3 pixel condition numbers

- Optimal condition r is ½ here
- No significant difference between slow and fast scans
- Both achieve very reasonable condition numbers

Another example (similar setup)

Residue maps: CMB + Galaxy

Ranajoy Banerji

NSIDE = 1024

3x3 pixel covariance matrices

Noise power spectra

- 1. See Linda Polastri's talk tomorrow
- 2. Still to do:
 - a. Non boresight detectors ("edge" of focal plane)
 - b. Montecarlo over noise (100 maps for each case)

- Data model: $d(t) = [I + Q\cos(2\theta) + U\sin(2\theta)] + n(t)$
- then: $\widetilde{\mathbf{S}} = \left(\mathbf{A}^T \mathbf{N}^{-1} \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{N}^{-1} \mathbf{D}$

$$\mathbf{A} \equiv rac{1}{2} \left(egin{array}{ccc} A_{tp}^{(1)} & A_{tp}^{(1)} \cos 2\phi_t^{(1)} & A_{tp}^{(1)} \sin 2\phi_t^{(1)} \ dots & dots & dots \ A_{tp}^{(k)} & A_{tp}^{(k)} \cos 2\phi_t^{(k)} & A_{tp}^{(k)} \sin 2\phi_t^{(k)} \ \end{array}
ight).$$

$$\mathbf{N} \equiv \langle \mathbf{n}_t \mathbf{n}_{t'} \rangle = \begin{pmatrix} \left\langle n_t^{(1)} n_{t'}^{(1)} \right\rangle & \cdots & \left\langle n_t^{(1)} n_{t'}^{(k)} \right\rangle \\ \vdots & \ddots & \vdots \\ \left\langle n_t^{(k)} n_{t'}^{(1)} \right\rangle & \cdots & \left\langle n_t^{(k)} n_{t'}^{(k)} \right\rangle \end{pmatrix}$$

- assume $\left\langle n_t^{(i)} n_{t'}^{(j)} \right\rangle \propto f(|t-t'|)$ (quite a strong condition for cross-correlation). . .
- Standard solution since $\mathbf{N}^{-1} = \bar{F}^T \mathbf{R}^{-1} \bar{F}$ and \mathbf{R} is "block-circulant".

$$< n1 \ n1> = < n2 \ n2> = A [1 + (f/f0)^{-1}]$$
 Model by G. Patanchon $< n3 \ n3> = A [(f/f1)^{-1}] + c]$ $= n2 + n3$ Model by G. Patanchon $= n2 + n3$ Model by G. Patanchon $= n2 + n3$ Model by G. Patanchon Model by G. Patanchon $= n2 + n3$ Model by G. Patanchon Model by G. Patanchon $= n2 + n3$ Model by G.

A. Buazzelli, G. De Gasperis

The work plan

- Map making validation (Linda Polastri's talk)
 - a. How effectively can we reconstruct polarization without HWP?
 - b. Aim at single-detector maps
 - c. Assess noise performance for various strategy via MC analysis
- 2. Cross-correlated noise (cross-talks)
 - a. Evaluate impact for toy-model. Assess improvement with dedicated treatment (devoted GLS map-maker)
- 3. Band-pass mismatch (Guillaume Patanchon's talk)
 - a. Assess vulnerability to multi-detector map making
- 4. Non symmetric beams (talks by Ranojoy Banjeri and Eric Hivon)
 - a. Correct for leakage both at map harmonic (power spectrum) level
- 5. Correct for toy model of "timeline" systematic (e.g. thermal in origin)
- 6. Other issues to consider: pointing error, glitches

Conclusions

- We have agreed on and started to setup a minimal work plan to produce and analyze simulations aimed at systematic effects.
- The plan is evolving. Some activities well defined and on track, others need better characterization
- Join the group if you feel you can contribute! (email me or Mark)
- There is still a (slim) margin to serve other paper needs.
 Anyone interested: act fast!

