Towards a next space probe for CMB observations and cosmic origins exploration, CERN 17-20 May 2016

Exploring fundamental physics with gravitational waves

G.F. Giudice

based on 1605.01209 with M. McCullough & A. Urbano
GW: science fiction come true!

Merging of two BH (36 and 29 M_\odot) 410 Mpc away, emitting $3 M_\odot$ in GW
BH radius:

\[R_{BH} = \frac{2M_{BH}G_N}{c^2} = 106 \text{ km} \]

\[\frac{M_{BH}}{36M_\oplus} \]
BH radius:

\[R_{BH} = \frac{2 M_{BH} G_N}{c^2} = 106 \text{ km} \frac{M_{BH}}{36 M_\odot} \]

relativistic velocities!
Energetic output
≈ 3 M☉ in 0.1 s

3 M☉ = 2×10^{41} \text{ kWh} ≈ 10^{34} \text{ Hiroshima}

Power: 3 M☉ / 0.1 s = 10^{46} \text{ kW} = 3×10^{22} L☉

Stars in the universe: 10^{22}-10^{24}
Flux: $5 \times 10^{-3} \text{ W/m}^2 = 4 \times 10^{-6} F_\odot$

Strain: $10^{-21}-10^{-22}$ of 4 km arms

⇒ $10^{-18} \text{ m} \approx 10^{-3}$ proton radius
Not only a fantastic tool for astronomy, but a new testing ground for fundamental physics

Testing gravity under extreme conditions

- gravitational field is strong and rapidly changing
- curvature of spacetime in large
- dynamics of event horizons
- velocities are relativistic

GW150914 can be used to test:
- equivalence principle, modifications of gravity,
- quantum structure of BH, propagation of GW, ...
Search for new physics in the form of Exotic Compact Objects (ECO)

- DM primary motivation
- New light elusive particles that can coalesce into ECOs
- GW offer unique tool for probing the existence of ECOs
Boson stars

- Supported by Heisenberg’s principle

\[R \sim \frac{\hbar}{m_B c} \quad \text{no gravitational collapse if } R > R_{BH} = \frac{2G_N M}{c^2} \quad \Rightarrow \]

\[M_{\text{max}} = 0.633 \frac{M_P^2}{m_B} \approx \left(\frac{10^{-10} \text{ eV}}{m_B} \right) M_\odot \]

- Supported by repulsive self-interaction

\[V(\phi) = m_B^2 |\phi|^2 + \frac{\lambda}{2} |\phi|^4 \]

\[M_{\text{max}} = 0.06 \sqrt{\lambda} \frac{M_P^3}{m_B^2} \approx \sqrt{\lambda} \left(\frac{100 \text{ MeV}}{m_B} \right)^2 10 M_\odot \]

- Non-topological solitons (localized solutions of EoM in presence of a conserved charge Q and with trivial asymptotic behaviour)
Fermion stars
Supported by Fermi pressure
Chandrasekhar limit \(M \lesssim \frac{M_P^3}{m_F^2} \)
Multi-component stars
Mixtures of exotic or ordinary/exotic matter components

Dark-matter stars
- Strongest motivation for exotic matter
- Is DM collisionless?

Problems of simulations with collisionless DM:
- Profiles of dwarf galactic haloes too cuspy
- Too many satellite galaxies
- Dwarf galaxies too massive
 + Indications from gravitational lensing of elliptical galaxies falling into Abell 3827 cluster

\[
\frac{\sigma}{m_{DM}} \approx 0.1 - 1 \, \text{cm}^2\text{g}^{-1}
\]

ECO formation?
Dark-energy stars (gravastars)

- Relativistic fluid: $p = \rho$
- Vacuum energy: $p = -\rho_0$
Limits from microlensing in the LMC

For $M \sim 1$ to tens of M_\odot, 20-40% of halo DM is allowed:

- ECO can be as numerous as ordinary stars
- ECO could be made of DM, if DM is both in dust and compact objects
LIGO sensitivity to ECO binary mergers

In terms of the astrophysical parameters only:

• mass M (for $M_1=M_2$)
• compactness $C = M/R \ (C_{BH}=1/2)$

GW frequency grows as the two objects approach \Rightarrow sensitivity to size

At innermost stable orbit: $f = \frac{\sqrt{2} C^{3/2}}{3 \sqrt{3} \pi M}$ $f_{\text{LIGO}} \sim 50 - 1000 \text{ Hz}$

Signal/noise must be sufficiently large (depends on D_L)
Interesting for axion-like DM:

$$m_a = \left(\frac{10^{17} \text{ GeV}}{f_a} \right) 0.6 \times 10^{-10} \text{ eV}$$

Interesting for asymmetric DM:

$$m_{DM} = \frac{\eta_b}{\eta_{DM}} \ 5 \text{ GeV}$$
How to detect ECO in a single GW event

Inspiral
- post-Newtonian expansion
- chirp mass $M_c = \frac{(M_1 M_2)^{3/5}}{(M_1 + M_2)^{1/5}}$
- redshift (from the way frequency and amplitude change)

Ringdown
- QNM as perturbations of Kerr BH solution

Merger
- numerical relativity (progress in the last 10 yrs)
- need to develop ECO simulations
Extraordinary sensitivity

\[
\begin{align*}
\{ & m_1 = 39.4 \, M_\odot \\
& m_2 = 30.9 \, M_\odot \} \quad \text{vs} \quad \{ & m_1 = 43.4 \, M_\odot \\
& m_2 = 28.0 \, M_\odot \} \\
\end{align*}
\]

Black: LIGO best fit
Red: same chirp mass, but mass ratio excluded @ 90% CL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary black hole mass</td>
<td>$36^{+5}{-4} M\odot$</td>
</tr>
<tr>
<td>Secondary black hole mass</td>
<td>$29^{+4}{-4} M\odot$</td>
</tr>
<tr>
<td>Final black hole mass</td>
<td>$62^{+4}{-4} M\odot$</td>
</tr>
<tr>
<td>Final black hole spin</td>
<td>$0.67^{+0.05}_{-0.07}$</td>
</tr>
<tr>
<td>Luminosity distance</td>
<td>410^{+160}_{-180} Mpc</td>
</tr>
<tr>
<td>Source redshift z</td>
<td>$0.09^{+0.03}_{-0.04}$</td>
</tr>
</tbody>
</table>
From inspiral, we could learn about C
(GW150914 must come from BH merger as objects come very close)

At innermost stable orbit

$$\frac{f_{BH}}{f_{ECO}} = 5.5 \left(\frac{0.16}{C} \right)^{3/2}$$

$M_{BH} = M_{ECO} = 35 \, M_{\odot}$
$C_{BH} = 0.5$
$C_{ECO} = 0.16$
Ringdown is sensitive to EoS and absence of horizon

For a gravastar with $M_{BH} = M_{ECO} = 35 \, M_{\odot}$, $C_{ECO} = 0.44$
What can be learned from GW event distributions?

Conventional heavy objects:
- **NS**: most massive observed $M=2.01\pm0.04\,M_\odot$ and most models hardly exceed $2\,M_\odot$ ($0.13\leq C\leq0.23$)
- **Stellar BH**: mass distribution expected to start at $5\,M_\odot$ ($C=0.5$)

Mass gap can be explained in stellar evolution models
Filling the gap is evidence of a new population of exotic objects.

Distribution is an essential tool to understand ECO mass function and formation process.
Test of Area Theorem

Hawking’s Area Theorem: the sum of the horizon areas of a system of BHs never decreases.
It follows from GR + null energy condition.

Hawking’s radiation: M decreases $\Rightarrow R$ decreases $\Rightarrow A$ decreases.
Violation of the theorem?

Thermodynamics interpretation: BH temperature $T = M_p^2/M$
BH entropy $S = A/4$.
Second law of thermodynamics \Rightarrow Area Theorem.
Once the entropy of the emitted radiation is taken into account, no violation of the “generalized” second law of thermodynamics.
Test of Area Theorem in BH mergers

For a Kerr BH: \[A = 8\pi M^2 \left(1 + \sqrt{1 - a^2} \right) \quad a \equiv \frac{J}{M^2} \]

Hawking’s Area Theorem: \[A_f > A_1 + A_2 \]

\[M_f > \sqrt{M_1^2 s_1 + M_2^2 s_2} \quad s_{1,2} \equiv \frac{1 + \sqrt{1 - a_{1,2}^2}}{1 + \sqrt{1 - a_f^2}} \]

Hawking’s Area Theorem:
lower bound on \(M_f \) \(\Rightarrow \) upper bound on efficiency of GW emission
What if the Area Theorem is observed to be violated? A BH-mimicker ECO can violate it by emitting dark radiation

- Test of fundamental principles
- Test of undetected radiation
Conclusions

- GW observations have opened a new avenue in astronomy
- A unique tool to test gravity in the regime of strong and rapidly-changing field, and relativistic velocities
- Search for new forms of matter in compact objects
- Probing DM clumping in astronomical bodies
- Probing a variety of new-physics ideas
- Information in single GW events and event distribution
- Testing Hawking’s Area Theorem can probe dark radiation