Science Summary

Anthony Challinor (Cambridge) & Eiichiro Komatsu (MPA) on behalf of the contributors

CERN workshop, May 20, 2016

What to de-scope?

- Paolo's suggestions on Tuesday:
 - 1 rpm -> 0.5 rpm
 - $1.5 \text{ m} \rightarrow 1.2 \text{ m} \rightarrow 0.8 \text{ m}$
 - ~2400 detectors -> ~1200 detectors

What to de-scope?

- Paolo's suggestions on Tuesday:
 - 1 rpm -> 0.5 rpm: not easy to translate this to sensitivity without detailed study
 - 1.5 m -> 1.2 m -> 0.8 m: focus on this
 - ~2400 detectors -> ~1200 detectors: just integrate twice as long

Inflation

- The precision on r improves as we increase the aperture size (Di Valentino, Melchiorri, Lesgourgues).
 However, the power to distinguish between models does not improve so much (Martin, Clesse, Vennin)
- l.e., as long as we can detect r~10⁻³, the precise value does not seem to matter so much
 - Improvement in n_s modest from 1.2 to 1.5m
- Conclusion: 1.2m would be sufficient. 0.8m not good because of insufficient ability to de-lens

Clesse/Martin/Vennin

Inflation

- Conclusion: 1.2m would be sufficient. 0.8m not good because of insufficient ability to de-lens
- Having said it:
 - Once the model is chosen, detailed studies can reveal more physics of inflation, e.g., reheating.
 Constraining more parameters can benefit from a larger aperture

Neutrino: Neff

- Detecting $N_{\text{eff}} > 3.000$ [thus confirming the standard prediction $N_{\text{eff}} = 3.046$] would be tremendous
 - Aiming at $\Delta N_{eff} < 0.02$
 - COrE+ only would not achieve this [ΔN_{eff} ~0.03 for both 1.2 and 1.5m]. 0.8m kills [ΔN_{eff} ~0.04] (Di Valentino, Melchiorri)
 - But, ΔN_{eff}~0.02 (or even 0.01) could be achievable in combination with the large-scale structure (but needs checking; Lesgourgues)
- Conclusion: 1.2m would be sufficient. 0.8m not good

Neutrino: Neff

- Conclusion: 1.2m would be sufficient. 0.8m not good
- Having said it:
 - A benefit of going to 1.5m is an ability to break degeneracy between, e.g., N_{eff} and the helium abundance, running index, etc

Neutrino: m_v

- Target: to detect ∑m_v=60 meV
- 1.2 and 1.5m yield similar results (1σ~44 meV) because the error bars are limited by parameter degeneracy (Di Valentino, Melchiorri, Lesgourgues)
 - Can achieve the target (1σ~20 meV) when combined with the large-scale structure (e.g., DESI)
- Would it be similar for 0.8m? Yes with the BB analysis
 (Melchiorri), but an analysis with the lensing reconstruction would be necessary to conclude whether 0.8m would do
- Conclusion: 1.2m is sufficient. Too early to tell whether 0.8m would do

Galaxy Clusters

- 0.8m completely kills this science, except for a large-scale Compton Y map
- Trade-off between 1.2m and 1.5m: not yet done, will be done for the ECO paper (Melin, Bartlett)
 - But, the gain is steep: 1.5m is far more preferred than 1.2m for, e.g., lensing mass estimation of clusters
- Conclusion: this science will drive the need for 1.5m. Detailed studies necessary for the trade-off
 - Synergy with ground-based telescopes should be carefully described

Census of Baryons

- Seeing the feedback of AGNs on the gas distribution in galaxies (tSZ) (Bartlett, Melin)
 - In-situ dust contamination is significant, and cleaning it requires a high frequency
 - How high is sufficient (>500GHz? 600GHz?) requires more study
- Conclusion: this science will drive the need for a higher frequency, higher than needed for the CMB science

Other topics

- Peculiar velocities (Burigana, Notari)
- Non-Gaussianity (Desjacques)

These do not seem to drive the design

Science: Summary

- The baseline of 1.2m in 60-600 GHz seems OK for
 - Inflation
 - Neutrino parameters
- The science that demands 1.5m is the galaxy cluster and large-scale structure studies. More detailed study is necessary for this option (ECO paper and Phase A)
- Higher frequency helps separation of dust/CIB and the SZ effect. How high? Needs more study