

Payload requirements in order of priority? (at least from ESA perspective)

- Costs
 - 550 M€ + EU National agencies ? + External collaborators ?
 - Cannot take into account externals for the proposal
 - Probably 650M€ max
- High TRL and low risk scheme
 - Need to pass the "technology screening"
- Dimension envelope
 - Ariane 6 fairing cylinder of 4.6m diameter x 4m high
 - 2m diameter, 2 m height available for payload
- Mass
 - Safely assume that we cannot go beyond Planck mission
 - COrE+ 2014: 1958 kg; Planck was 1500kg
- Power consumption
 - Will dictate if we need deployable solar panels or not (added risks)
 - COrE+ 2014: 2073 W; Planck was 1700 W
- Data rate
 - COrE+ 2014: 2.4 Mbits/s

Payload trade-off – Sub-systems cannot be treated independently

Size and configuration of the telescope

- No more than 1.5m diameter primary
- Rather 1.2m
- Cannot use CTR configuration

No HWP (at least as the first element)

(Cost, Dimensions & Mass)

- Impact on solar panels size
- Impact on data transfer

(Cost, Power, Data transfer)

Descope ?
Impact on Science?

FPU and number of detectors Technology (EU)

(Cost, Power, cooling power, Data transfer, dimensions, mass, TRL)

Ground Tests and calibration

• Impact on in-flight calibration (Cost, Schedule, Risks)

Cooling chain

- Passive / active
- Choice: impact on signal,

(Cost, Power, dimensions, mass, TRL)

CDF baseline

- use of cold HWP in front of telescope is a fundamental difference in Litebird and Core+ designs which is a design driver (e.g. limited angular resolution, frequency range)
 - Neither team convinced of need for HWP
 - resolution must be achieved by realistic simulations w/ and w/out HWP
 - Cannot be done within the timescale of the CDF
- Fundamental requirement of the European team is high angular resolution (aperture > 0.8 m), both for B-mode science and additional science
 - it was agreed to study a single configuration with no HWP and an effective aperture ~1.2 m
 - Use prior knowledge as much as possible (Planck, NGCryoIRTel)
 - Assume use of European technology
 - Ignore details of focal plane (treat as "black box")
 - Allowing for reimaging optics inside black box
 - Include a cold baffle to reduce straylight and act as partial cold stop
 - high spin rate (2 rpm) to mitigate low frequency noise

ESA UNCLASSIFIED - For Official Use - Privileged

Summary

Mission description

- Orbit: Large amplitude Halo orbit around L2 (like Herschel). No scientific need for a small amplitude Lissajous orbit (like Planck)
- Launch Vehicle:
 - H-II/H-III launcher, sizing for fairing volume (4.6 m Ø X ~4 m h cylindrical part)
 - Ariane 6.2 sizing for mass performance to L2.
- Full sky coverage with scanning law consisting of three combined rotations:
 - Spin @ 2 RPM around axis at β =
 45 deg wrto optical axis
 - 4-day Precession of spin axis with a
 = 50 deg wrto Sun line
 - Daily Sun-SC line rotation

Slide 11

ESA UNCLASSIFIED - For Official Use - Privileged

Summary

Communication

- Science Data Volume (includes compression of factor 4)
 - Option 1 (O1) (2 RPM): 4.8 [Mbps] 414.72 [Gbit/day]

- Too high for X-band (band limited to 10 MHz), K-band downlink required (as Euclid)
- 4h downlink/day assumed with 35-m Cebreros, data rate ~15 Mbps
- 0.2 m Parabolic K-band HGA
- Mechanical steering required as Electrical steering will imply too high power
- 15 W RF power and TWT-based amplifiers

X/X/Ka DS TRSP

K-Band TWT

Cryogenic architecture - Baseline

Telescope < 60 K

Cryogenic architecture - Baseline

- → Payload available volume: ~2m diam / 2m height
- + Has more heritage (Planck), predicted V-Groove temp ~45K
- Requires cryo-testing with Helium shrouds (high cost)

Active cooling looks feasible, but low margins on 4K/2K cooling stages → further optimisation will be required

Cryogenic architecture - option 1

Telescope ~ 30 K

Cryogenic architecture - option 1

- Limits Payload available volume to ~2pr diam / 1.5 m height Max aperture ~ 80 cm
- Does not Require System level cryo-testing with Helium shrouds
- Telescope testing @30 K required
- Requires ~300 W additional cooling power vs option 1
 - Requires dis-connectible support
 - Relies on 15 K Pulse Tube qualification (ATHENA)
 - Cooling power marginal vs heat load; requires optimisation

Cryogenic architecture – option 2

Telescope ~100 K

Cryogenic architecture-option 2

- Two V-grooves, passive cooling down to 100K only →
- No testing required in LHe chamber in CSL (Telescope and System)
- → Higher Telescope temperature → higher background
- Load on the active cooling at 20K increased → additional 20K JAXA shield cooler or ESA 15K PT might be required
- Active cooling looks feasible, but still low margins on 4K/2K cooling stages → further optimisation will be required

Will need to think seriously about the impact as this is a way to cut cost!

G. Morgante

- Need for a system engineering from the start!
 - Contrary to Planck where this was set up towards the end
- Margin management
 - critical without system coordination
- Testing is never too much!
 - Anticipate testing with different models
 - test subsystems together

How to achieve 20K?

- Sorption cooler based on Planck heritage performed well
 - Expertise "lost" in the US who provided Planck 20K cooler
 - Could be developed in Europe with Planck expertise: Possible backup solution.
- Pulse Tube Cooler could be the solution
 - Advantages
 - Lower base temperature (15K)
 - Lower mass
 - Also provide cooling power at 100K
 - Disadvantage
 - Mechanical cooler → vibrations
 - But should be low enough (TBC)
 - and KID detectors are less prone to microphonics vs TES

Y. Pennec – Air Liquide

ALAT 15K PTC

Yan Pennec

Leveraging on ALAT long heritage

- 1st stage based on TRL8-LPTC
- 2nd stage cold finger based on the 20-50K
- Novel low temp regenerator
- Mass 2.5 Kg CFA + 10 Kg Compressor
- TRL 5 Soon to be developed to TRL6 by Air Liquide
- 450mW @ 15K + 5W at 100K

AIR LIQUIDE

G. Vermeulen

CNRS CCDR TRL 4 UNIT

Plan only - not yet funded!

ALAT-CNRS CCDR: ROAD TO EM TRL 5/6

1	Dimensions	Less than 350x200x150mm*
2	Weight	TBD
3	Mechanical Interface	X-IFU
4	Base Temperature	50mK/100mK
5	Cooling Power at Base Temperature	600nW
6	Base Temperature Stability	< 3uK/10mn
7	Intermediate Stage Temperature	300mK
8	Intermediate Stage Temperature Stability	TBD
9	Cooling Power at Intermediate Stage	13uW
10	Reject Stage operating temperature	1.7K
11	Reject Stage Power Consumption	<8mW
12	Magnetic Straight Field radiated	<10^4 T
13	Thermal and Vacuum stress range	-50C -> 60C
14	Launch Vibration stress range	Ariane Standard

Project Lead and Scientist: Dr. Yan Pennec

Project Manager: Pascal Barbier

Scientific Advisor: Dr. James Butterworth (Planck Alumni) Senior Mechanical Engineer: Gerald Fruh (Planck Alumni)

Mechanical Engineer: Eric Patras Mechanical Engineer: Gaetan Coleiro Structural Engineer: Samuel Ducarouge

Fabrication Technician: Dominique Chazot (Planck Alumni)

Fabrication and Test Technician: Guillaume Dorel

Engineer PA/QA: Benoit Barthélemy

Expert System Engineer: Thierry Wiertz (Planck Alumni)

Director: Pierre Crespi (Planck Alumni)

Comments from Y. Pennec

- Heritage from Planck is invaluable
 - V-Groove + Dilution + Structure
- Cryo chain for CORE feasible but extremely challenging
- Do not underestimate mechanical design constraints
 - launch locks/Isolators/Dampers/Supports
- CCDR is ready for an EM level development (funding?)
- Priority: define realistic cryostat
- Critical inputs: define thermal loads
 - Depends on detector technology
- Main issue is not 100K/40K telescope
- The scary bit: mass of the focal plane
 - 30 kg as for the M4 proposal would be extremely challenging (and probably very costly)
 - − 3 − 5 kg more reasonable

Cryogenic chain comment / conclusions & Actions

- Open Dilution Refrigerator (Planck) a possibility ?
 - Price of ³He might not be such a big issue in comparison to the cost of developing the CCDR
 - It will depend on the cooling power needed
 - FPU mass and dissipation
 - Has a limited lifetime
- Actions to go forward
 - Define the cooling needs and the <u>mass</u> of the FPU
 - M. Bersanelli, Joel Ullom et al: Evaluate Mass of focal plane with horns with Aluminum platelets, coated silicon (or combination)
 - J. Delabrouille: to ask CNES for thermo mechanical structure basic design
 - To be given as input to Y. Pennec to refine thermal/cryo analysis

What we learned from Planck

- Systematic effects must be attacked, first of all, in hardware
- Know the instrument and simulate its behaviour using its physics
- Know the data and look for residuals
- Physically-based simulations and data-driven analysis must be combined to understand residual systematic uncertainties

How should we handle systematic effects budget for COrE?

A three-steps approach

1. Define the global budget

- Should come from scientific objectives
- At what level we define it? (Maps, power spectra, cosmological parameters?)

2. Break down the budget

- Define list of known sources of systematic uncertainties (main categories: optics, detectors, electronics, thermal...)
- Make a reasonable guess on how the global budget should be broken down → first guess on requirements

3. Assess performance

- Possible objective for phase A study
- Simulate residual effects coming from known systematic effects assuming a given mission design
- Assess impact on scientific products
- Iterate with payload and instrument design if necessary

Ground Calibration

M. Bersanelli:

Large heritage from Planck

Challenge: \sim 100 times more channels, \sim 30 times deeper

Model Philosophy

From Planck

- Structural Model
- Cryogenic Qualification Model (CQM)
 - P/L QM, with a full structure (as for Planck), SVM dummy with fittings for the PLM coolers and "PLM warm units", to be used for the cryogenic test qualifying the chain of cryo stages
- SVM Avionics Model (AVM)
- Protoflight Model (PFM)
 - New, no refurbishment from other models
- RFQM (refurbished CQM), tbd. depending on achievement of optical verification
- Mirror models:
 - QM, SM and FM: QM for the CQM and then the RFQM
- Flight spares

Planck Instrument Calibration Plan

COrE Calibration

Classes of instrument parameters

- 1. Photometric calibration: Conversion of telemetry units to physical units (KCMB). Gain factors fwill be measured on the ground at several stages. The final calibration will be performed in-flight.
- 2. Relative calibration: stability of the gain, 1/f noise, noise spectra, zero-level stability. The redundancy of the scanning strategy will help on this.
- 3. Thermal effects: systematics induced by thermal fluctuations in the 0.1 K, 1.7 K, 4 K, 20 K, and 300 K stages; cooler induced microphonics. Thermal susceptibility of detector response. Verify that temperature sensors H/K provide sufficient monitoring of instrument thermal configuration and stability.
- 4. Detector chain non-idealities: detector (TES of KIDs) characterization, detector time-response; non-linearity of the detector response; nonlinearity of ADC converters; impact of cosmic rays; sensitivity to microphonics, temperature susceptibility, cross-talk.
- 5. Spectral calibration: filter characterization (module level), detailed bandpass measurements. These measurements will be done on the ground, as no sweeping sources is planned on the satellite. In-flight verification of the measured bandpasses will be possible through observation of diffuse and point sources with steep spectra.
- 6. Optical calibration: main beam determination, near side-lobes, far side-lobes (both total intensity and polarization). Direct measurements of the main beams and near lobes in-flight from planets and strong polarization sources. Cross-polarization, reflection. Alignment. Pointing.
- 7. Polarization-specific calibration: polarization efficiency and polarization angle of each detector; These will be measured both on-ground and in-flight.
- 8. Noise characterization: detailed measurements of the noise properties (noise power spectrum, 1/f noise, possible non-gaussianity) and their time evolution.

COrE Optical calibration

Objective of test/ measurement	Requirements	On-ground (at what stage)	In-flight	Instrument model verification
Optical coupling at FPA	FWHM (Edge taper): 30dB Losses < 0.1dB Reflections: VSWR > 40dB Cross-polarization: <30dB	- Single detector - Module - Instrument	N/A	Compare to GRASP simulations Feeds/lenses prototypes
Main beam determination Both total intensity and polarization	FWHM per freq (value spread) Ellipticity < 1.1	- Single detector - Module RFQM (With telescope)	Direct measurements of main beam exploiting signals from ALL external planets Strong polarization sources: polarized beams	Compare to GRASP simulations Beam variation in-band
Sidelobe determination - near side-lobes, - far side-lobes Both total intensity and polarization	Rejection needed for: Galaxy, Sun, Earth, Moon 20dB lower than Planck	RFQM (With telescope)	Intermediate sidelobes down to -35 dB to -40 dB with Jupiter will be possible in-flight	Trade off edge taper with angular resolution Compare to GRASP simulations Beam variation in-band
Internal straylight	Limit background on detectors from - FPA environment - P/L environment - Baffle	- Single detector - Module - Instrument - CQM - PFM (at CSL)	May be able to test during cooldown	Thermal model Emissivity Baffle
Filter characterization	- Band definition (from comp sep) - Bandwidth (sensitivity) - Consider CO lines (and other moloecules)	- Unit/Module level - CQM (cryo conditions)	N/A	Filter models Filters prototypes

Planck Telescope: alignment

- Mechanical alignment
- Photogrammetry
- Specific RF component added on FPU for ground tests
 - Extra horn + diode at 320 GHz (RTH)

Fig.3. The 320 GHz Reference Test Horn in Planck's Focal Plane

Contraves Space

Planck RFQM & Optical Calibration

Frequency	AZ max RF (°)	EL max RF (°)
30	7.78	-1.85
70	6.09	2.53
100	5.40	-1.10
320	3.88	1.05

Table 1: Measured angular direction (main lobe)

Compare measured beam parameters with accurate optical model

Beam verification for Planck 1.2 Comparison between simulations and measurements 1.15 **Simulated** Measured 70 GHz -50 -60 320 GHz copol -70 -100 Main beams Tauber J. et al, A&A 2010 4π 120 120 100GHz Xpol 320 GHz -100 -110 -120 '-20 May 2016 120 5.7

Optical simulations

- Very good agreement between RF measurements and GRASP simulations
- Further progress in optical simulations performed since then
 - Talk from F. Villa, M. Sandri et al
 - GRASP adapted for focal surface evaluation (WaFER tool)
- Other tools will most probably need to be developed
 - We need an excellent RF model of the instrument
 - Tools developed for R&D need to be adapted
 - FEA, MoM,.....
 - Then fed back into GRASP

Optical testing and verification From Planck to COrE

Similarities

- Telescope: Can re-use the same technology
- Can re-use verification / alignment procedures ?

Differences

- Many more pixels (10s to 1000s) + More spectral bands (9 to 15?)
 - → which testing strategy? Test on samples for components? Then rely on integrated tests on overall instrument?
- Calibration needs more accuracy
 - due to increase sensitivity (x30) → need to have a better understanding of the instrument / reduce systematics
 - Will need to use more accurate testing equipment
- Different technology
 - Use of planar / lens technology with possibility of cold stop and potentially higher straylight

FPU Technology

- 1000s of pixels → Is it realistic to use horns?
- If European technology used
 - Use of planar / lens technology with possibility of cold stop and potentially higher straylight

Equivalent of RFQM beam measurement

- Telescope with a cold instrument in CTR?
 - Unlikely feasible by industry (Thales, Airbus space) or at a huge cost
 - Warm instrument → need to replace detector
 - Could we think of a test at Liege facility?
 - Will need combination of validation tests

Design of cavity-backed sinuous CERN 17-20 Mantenna with baluns.

Conclusion on Calibration and Verification

- Calibration and Verification for COrE will be extremely challenging
 - More detectors, more bands, higher specs
- Strategy has to be thought well in advance
- Need to re-use what has been used for Planck as much as we can
 - But not all tests can be re-cycled
 - Will need to come up with new tests depending on technology used
- We probably need to include a calibration strategy / plan in the proposal