Hunting down the right inflation model ! LiteBird vs. LiteCORE vs. CORE+

Sébastien Clesse

in collab with: C. Ringeval (UCL, Louvain) V. Vennin (ICG, Portsmouth)

delensing products provided by: J. Errard (Inst. Lagrange, Paris) S. Feeney (Imp. College, London)

RNTHAACHEN UNIVERSITY

What are the initial conditions of the LCDM model?

and the second second

What are the initial conditions of the LCDM model?

Shape of primordial power spectrum Amplitude + scalar spectral index

What are the initial conditions of the LCDM model?

Shape of primordial power spectrum Amplitude + scalar spectral index

What are the initial conditions of the LCDM model?

Shape of primordial power spectrum Amplitude + scalar spectral index

What are the properties of the inflaton potential? Which models are ruled out?

What are the initial conditions of the LCDM model?

Shape of primordial power spectrum Amplitude + scalar spectral index

What are the properties of the inflaton potential? Which models are ruled out?

Shape of the potential: concave, convex, slope, multi-field Slow-roll (Hubble-flow) parameters: $\epsilon_1, \epsilon_2, \epsilon_3$

Models confronted to data: Bayes factor + ASPIC **Library**

What are the initial conditions of the LCDM model?

Shape of primordial power spectrum Amplitude + scalar spectral index

What are the properties of the inflaton potential? Which models are ruled out?

Shape of the potential: concave, convex, slope, multi-field Slow-roll (Hubble-flow) parameters: $\epsilon_1, \epsilon_2, \epsilon_3$

Models confronted to data: Bayes factor + ASPIC Library Vennin, 1312.3529

What are the initial conditions of the LCDM model?

Shape of primordial power spectrum Amplitude + scalar spectral index

What are the properties of the inflaton potential? Which models are ruled out?

Shape of the potential: concave, convex, slope, multi-field Slow-roll (Hubble-flow) parameters: $\epsilon_1, \epsilon_2, \epsilon_3$

Models confronted to data: Bayes factor + ASPIC Library **Martin, Ringeval, Vennin, 1312.3529**

What's next?

A REAL PORT OF A REAL PROVIDED AND A REAL PROVIDED AND A REAL PROVIDED AND A REAL PROVIDED AND A REAL PROVIDED

What are the initial conditions of the LCDM model?

Shape of primordial power spectrum Amplitude + scalar spectral index

What are the properties of the inflaton potential? Which models are ruled out? Share of the potential: concave convex slope multi-field Planck

Shape of the potential: concave, convex, slope, multi-field Slow-roll (Hubble-flow) parameters: $\epsilon_1, \epsilon_2, \epsilon_3$

Models confronted to data: Bayes factor + ASPIC Library Vennin, 1312.3529

What's next?

LiteBird, LiteCORE, CORE

What are the initial conditions of the LCDM model?

Shape of primordial power spectrum Amplitude + scalar spectral index

What are the properties of the inflaton potential? Which models are ruled out?

Shape of the potential: concave, convex, slope, multi-field Slow-roll (Hubble-flow) parameters:

Models confronted to data: Bayes factor + ASPIC Library Vennin, 1312.3529

What is the right model? LiteBird, LiteCORE, CORE Reheating?

1. MCMC Bayesian analysis: MontePython & COSMOMC

22 S - S - G & AD - 5 7

1. MCMC Bayesian analysis: MontePython & COSMOMC

2. Experimental specifications: LiteBird, LiteCORE120, LiteCORE150, CORE, optimal-CORE

Channel [GHz]	FWMH [arcmin]	$\Delta T \ [\mu K \ arcmin]$	$\Delta P \ [\mu K \ arcmin]$	
LiteBird, $l_{\text{max}} = 1350, f_{\text{sky}} = 0.7$				
80	55	12.5	17.7	
90	49	10.0	14.1	
100	43 12.0		17.0	
120	36	9.5	13.4	
140	31	7.5	10.6	
166	26	7.0	9.9	
195	22	5.0	7.1	
LiteCORE-120, $l_{\rm max} = 3000, f_{\rm sky} = 0.7$				
80	13.5	8.8	12.5	
90	11.9	7.1	10.0	
100	10.5	8.5	12.0	
120	8.8	6.7	9.5	
140	7.4	5.3	7.5	
166	6.3	5.0	7.0	
195	5.4	3.6	5.0	

LiteCORE-150, $l_{\rm max} = 3000, f_{\rm sky} = 0.7$				
80	10.8	8.8	12.5	
90	9.5	7.1	10.0	
100	8.4	8.5	12.0	
120	7.0	7.0 6.7		
140	5.9	5.3	7.5	
166	5.0	5.0	7.0	
195	4.3	3.6	5.0	
$(opt-)CORE, l_{max} = 3000, f_{sky} = 0.7$				
100	8.4	6.0(4.2)	8.5~(6.0)	
115	7.3	$5.0 \ (3.5)$	$7.0\ (5.0)$	
130	6.5	4.2(3.0)	5.9(4.2)	
145	5.8	3.6~(2.5)	$5.0 \ (3.6)$	
160	5.3	3.8(2.7)	5.4(3.8)	
175	4.8	3.8(2.7)	5.3(3.8)	
195	4.3	3.8(2.7)	5.3(3.8)	
220	3.8	5.8(4.1)	8.1(5.8)	

RNTHAACHEN UNIVERSITY

12 6 3 West Add 57

1. MCMC Bayesian analysis: MontePython & COSMOMC

2. Experimental specifications: LiteBird, LiteCORE120, LiteCORE150, CORE, optimal-CORE

Channel [GHz]	FWMH [arcmin]	$\Delta T \ [\mu K \ arcmin]$	$\Delta P \ [\mu K \ arcmin]$		
LiteBird, $l_{\rm max} = 1350, f_{\rm sky} = 0.7$					
80	55	12.5	17.7		
90	49	10.0	14.1		
100	43	12.0	17.0		
120	36	9.5	13.4		
140	31	7.5	10.6		
166	26	7.0	9.9		
195	22	5.0	7.1		
LiteCORE-120, $l_{\rm max} = 3000$, $f_{\rm sky} = 0.7$					
80	13.5	8.8	12.5		
90	11.9	7.1	10.0		
100	10.5	8.5	12.0		
120	8.8	6.7	9.5		
140	7.4	5.3	7.5		
166	6.3	5.0	7.0		
195	5.4	3.6	5.0		

LiteCORE-150, $l_{\rm max} = 3000, f_{\rm sky} = 0.7$					
80	10.8	8.8	12.5		
90	9.5	7.1	10.0		
100	8.4	8.5	12.0		
120	7.0	6.7	9.5		
140	5.9	5.3	7.5		
166	5.0	5.0	7.0		
195	4.3	3.6	5.0		
$(opt-)CORE, l_{max} = 3000, f_{sky} = 0.7$					
100	8.4	6.0(4.2)	8.5~(6.0)		
115	7.3	5.0(3.5)	7.0(5.0)		
130	6.5	4.2(3.0)	5.9(4.2)		
145	5.8	3.6~(2.5)	5.0(3.6)		
160	5.3	3.8(2.7)	5.4(3.8)		
175	4.8	3.8(2.7)	5.3(3.8)		
195	4.3	3.8(2.7)	5.3(3.8)		
220	3.8	5.8(4.1)	8.1(5.8)		

stitut für eoretische ilchenphysik und smologie

1. MCMC Bayesian analysis: MontePython & COSMOMC

2. Experimental specifications: LiteBird, LiteCORE120, LiteCORE150, CORE, optimal-CORE

MH [arcmin]	$\Delta T \ [\mu K \ arcmin]$	$\Delta P \left[\mu \text{K arcmin}\right]$				
eBird, l_{\max} =	$= 1350, f_{\rm sky} = 0.7$			LiteCORE-150, $l_{\rm max}$	$f_{\rm ax} = 3000, f_{\rm sky} =$	0.7
55	12.5	17.7	80	10.8	8.8	12.5
49	10.0	14.1	90	9.5	7.1	10.0
43	12.0	17.0	100	8.4	8.5	12.0
36	9.5	13.4	120	7.0	6.7	9.5
31	7.5	10.6	140	5.9	5.3	7.5
26	7.0	9.9	166	5.0	50	7.0
22	5.0	7.1	195	4.3	3.6	5.0
LiteCORE-120, $l_{max} = 3000$, $f_{sky} = 0.7$		$(opt-)CORE, t_{max} = 5000, J_{sky} = 0.7$				
13.5	8.8	12.5	100	8.4	6.0(4.2)	8.5(6.0)
11.0	7.1	10.0	115	7.3	5.0(3.5)	7.0(5.0)
11.9	1.1	10.0	130	6.5	<u>12(30</u>)	5.9(4.2)
10.5	8.5	12.0	1.15	5.8	3.6~(2.5)	5.0(3.6)
8.8	6.7	9.5	160	5.3	3.8(2.7)	5.4(3.8)
7.4	5.3	7.5	175	4.8	3.8(2.7)	5.3 (3.8)
6.3	5.0	7.0	105	4.3	3.8(2.7)	5.3 (3.8)
5.4	3.6	5.0	220	3.8	0.0 (4.1)	8.1(5.8)
	$\begin{array}{r} \text{MH} [\operatorname{arcmin}] \\ \hline \text{eBird, } l_{\max} = \\ 55 \\ 49 \\ 43 \\ 36 \\ 31 \\ 26 \\ 22 \\ \hline \text{ORE-120, } l_{\max} \\ 13.5 \\ 11.9 \\ 10.5 \\ 8.8 \\ 7.4 \\ 6.3 \\ 5.4 \\ \end{array}$	MH [arcmin] ΔT [μ K arcmin] eBird, $l_{max} = 1350, f_{sky} = 0.7$ 55 12.5 49 10.0 43 12.0 36 9.5 31 7.5 26 7.0 22 5.0 ORE-120, $l_{max} = 3000, f_{sky} =$ 13.5 8.8 11.9 7.1 10.5 8.5 8.8 6.7 7.4 5.3 6.3 5.0 5.4 3.6	MH [arcmin] ΔT [μ K arcmin] ΔP [μ K arcmin] eBird, $l_{max} = 1350, f_{sky} = 0.7$ 55 12.5 17.7 49 10.0 14.1 43 12.0 17.0 36 9.5 13.4 31 7.5 10.6 26 7.0 9.9 22 5.0 7.1 ORE-120, $l_{max} = 3000, f_{sky} = 0.7$ 13.5 8.8 12.5 11.9 7.1 10.0 10.5 8.5 12.0 8.8 6.7 9.5 7.4 5.3 7.5 6.3 5.0 7.0 5.0 5.0 7.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MH [arcmin] $\Delta T \ [\mu K \ arcmin]$ $\Delta P \ [\mu K \ arcmin]$ eBird, $l_{max} = 1350, f_{sky} = 0.7$ 5512.517.74910.014.18010.84312.017.0909.5369.513.41207.0317.510.61405.9267.09.91665.0225.07.11008.4DRE-120, $l_{max} = 3000, f_{sky} = 0.7$ 1008.411.97.110.01457.310.58.512.01157.38.86.79.51605.37.45.37.51605.35.43.65.02203.8	MH [arcmin] ΔT [μ K arcmin] ΔP [μ K arcmin] eBird, $l_{max} = 1350, f_{sky} = 0.7$ 55 12.5 17.7 55 12.5 17.7 80 10.8 8.8 49 10.0 14.1 90 9.5 7.1 43 12.0 17.0 100 8.4 8.5 36 9.5 13.4 120 7.0 6.7 31 7.5 10.6 120 7.0 6.7 26 7.0 9.9 105 4.3 3.6 22 5.0 7.1 100 8.4 6.0 6.7 11.9 7.1 10.0 105 8.5 12.0 115 7.3 5.0 (3.5) 130 6.5 4.2 (3.0) 145 5.8 3.6 (2.5) 160 5.3 3.8 (2.7) 175 4.8 3.8 (2.7) 175 4.8 3.8 (2.7) 125 143 3.8 (2.7) 125 143 3.8 (2.7) 125 143 3.8 (2.7) 125 143 3.8 (2.7) 125 4.3 3.8 (2.7) 125

nstitut für heoretische eilchenphysik und osmologie

- 1. MCMC Bayesian analysis: MontePython & COSMOMC
- 2. Experimental specifications: LiteBird, LiteCORE120, LiteCORE150, CORE, optimal-CORE
- 3. Fiducial models: Higgs inflation (HI) & Mutated Hybrid Inflation (MHI)

Most favored after Planck zero-parameter model no tensors,
in the middle of Planck
confidence region for ns

nstitut für Theoretische Teilchenphysik und Kosmologie

- 1. MCMC Bayesian analysis: MontePython & COSMOMC
- 2. Experimental specifications: LiteBird, LiteCORE120, LiteCORE150, CORE, optimal-CORE
- 3. Fiducial models: Higgs inflation (HI) & Mutated Hybrid Inflation (MHI)
- 4. Lensing extraction: CMBxCMB, provided by J. Errard et al., 1509.0670 Delensed spectrum used as a noise for $C_l^{\rm BB}$
- **5. Model comparison: Bayes factor for ~200 models in ASPIC library**

RNTHAACHEN UNIVERSITY

1. MCMC Bayesian analysis: MontePython & COSMOMC

CARLES AND A CONTRACT OF A DESCRIPTION OF A

- 2. Experimental specifications: LiteBird, LiteCORE120, LiteCORE150, CORE, optimal-CORE
- 3. Fiducial models: Higgs inflation (HI) & Mutated Hybrid Inflation (MHI)
- 4. Lensing extraction: CMBxCMB, provided by J. Errard et al., 1509.0670 Delensed spectrum used as a noise for $C_l^{\rm BB}$
- 5. Model comparison: Bayes factor for ~200 models in ASPIC library

Bayes Factor: $B_{\text{Ref}}^{i} \equiv \frac{\mathscr{E}(\mathscr{M}_{\text{Ref}}|D)}{\mathscr{E}(\mathscr{M}_{i}|D)} = \frac{p(\mathscr{M}_{i}|D)}{p(\mathscr{M}_{\text{Ref}}|D)}$ $p(\mathscr{M}_{i}|D) = \frac{\pi(\mathscr{M}_{i})\mathscr{E}(D|\mathscr{M}_{i})}{\sum_{i}\pi(\mathscr{M}_{i})\mathscr{E}(D|\mathscr{M}_{i})}$ $\mathscr{E}(D|M_{i}) = \int d\theta_{ij}\mathscr{L}(\theta_{ij})\pi(\theta_{ij}|\mathscr{M}_{i})$ Jeffrey's scale: $\ln B < -5 < -2.5 < -1 = 0$ **Strong Moderate Weak Inconclusive**

1. MCMC Bayesian analysis: MontePython & COSMOMC

Sector Contraction of the sector

- 2. Experimental specifications: LiteBird, LiteCORE120, LiteCORE150, CORE, optimal-CORE
- **3. Fiducial models: Higgs inflation (HI) & Mutated Hybrid Inflation (MHI)**
- 4. Lensing extraction: CMBxCMB, provided by J. Errard et al., 1509.0670 Delensed spectrum used as a noise for $C_l^{\rm BB}$
- **5. Model comparison: Bayes factor for ~200 models in ASPIC library**
- 6. Information gain on the reheating (see V. Vennin's talk)

1. MCMC Bayesian analysis: MontePython & COSMOMC

a second states of the second states and the

- 2. Experimental specifications: LiteBird, LiteCORE120, LiteCORE150, CORE, optimal-CORE
- **3. Fiducial models: Higgs inflation (HI) & Mutated Hybrid Inflation (MHI)**
- 4. Lensing extraction: CMBxCMB, provided by J. Errard et al., 1509.0670 Delensed spectrum used as a noise for $C_l^{\rm BB}$
- **5. Model comparison: Bayes factor for ~200 models in ASPIC library**
- 6. Information gain on the reheating (see V. Vennin's talk)
 - ~ between 10⁵ and 10⁶ CPU hours
 - > 2000 model comparisons

titut für coretische chenphysik und mologie

3. ...to compute forecasts on $\epsilon_1, \epsilon_2, \epsilon_3$

3. ...to compute forecasts on $\epsilon_1, \epsilon_2, \epsilon_3$

and the second second

. ...to compute forecasts on $\epsilon_1, \epsilon_2, \epsilon_3$

4. ...and on $n_{\rm s}, r, \alpha_{\rm s}$

A TOLE AND A MARKED

. then hunt down the right model!

. then hunt down the right model!

. then hunt down the right model!

5....and constraints on reheating

5....and constraints on reheating

Conclusion

ter and the second states to

- 1. Size does not matter, sensitivity does!
- 2. If tensors, isolating a few models is possible ...
- 3. ... and reheating temperature can be measured
- 4. If no tensors: ~25-30 viable models

Conclusion

- 1. Size does not matter, sensitivity does!
- 2. If tensors, isolating a few models is possible ...
- 3. ... and reheating temperature can be measured
- 4. If no tensors: ~25-30 viable models

My preferred experiment: LiteCORE120, 2x longer mission

Thank you!

RNTHAACHEN UNIVERSITY

