## Constraints on cosmological parameters from future missions

17-20 May 2016
Towards a next space probe for CMB observations and cosmic origins exploration
CERN

Eleonora Di Valentino Institut d'Astrophysique de Paris

## Experiments considered

|                     | $\sigma_P$             | FWHM     | delensing | $\overline{f_{sky}}$ |
|---------------------|------------------------|----------|-----------|----------------------|
|                     | $[\mu 	ext{K.arcmin}]$ | [arcmin] | factor    |                      |
| PIXIE               | 4.2                    | 96       | 1         | 0.7                  |
| ${\it LiteBIRD}$    | 4.5                    | 30       | 0.91      | 0.7                  |
| ${\it LiteCORE120}$ | 3.75                   | 7.5      | 0.55      | 0.7                  |
| COrE+ baseline      | 2.5                    | 6        | 0.41      | 0.7                  |
| COrE+ extended      | 1.5                    | 4        | 0.31      | 0.7                  |
|                     |                        |          |           |                      |

|                   | $\sigma_P \ [\mu 	ext{K.arcmin}]$ |     | delensing<br>factor | $\ell_{min}$ | $f_{sky}$ |
|-------------------|-----------------------------------|-----|---------------------|--------------|-----------|
| S3 wide (Adv-ACT) | 11.3                              | 1.4 | 0.79                | 50           | 0.4       |
| S3 deep (SPT-3G)  | 5.7                               | 1   | 0.56                | 50           | 0.06      |
| S4                | 1.4                               | 3   | 0.25                | 5            | 0.4       |



### LCDM

|                         | $\begin{array}{c} { m Planck~TTTEEE} \\ { m +~lowTEB} \end{array}$ | PIXIE               | ${ m LiteBIRD}$       | LiteCORE120             | $egin{array}{c} 	ext{COrE} + \ 	ext{baseline} \end{array}$ | $egin{array}{c} 	ext{COrE} + \ 	ext{extended} \end{array}$ |
|-------------------------|--------------------------------------------------------------------|---------------------|-----------------------|-------------------------|------------------------------------------------------------|------------------------------------------------------------|
| $\Omega_b h^2$          | $0.02225 \pm 0.00016$                                              | $0.0223 \pm 0.0012$ | $0.02226 \pm 0.00013$ | $0.022249 \pm 0.000048$ | $0.022249 \pm 0.000037$                                    | $0.022251 \pm 0.000028$                                    |
| $\Omega_c h^2$          | $0.1198 \pm 0.0015$                                                | $0.1200 \pm 0.0033$ | $0.11978 \pm 0.00060$ | $0.11978 \pm 0.00030$   | $0.11978 \pm 0.00025$                                      | $0.11978 \pm 0.00023$                                      |
| $ln(10^{10}A_S)$        | $3.094\pm0.034$                                                    | $3.095\pm0.017$     | $3.0946 \pm 0.0043$   | $3.0941 \pm 0.0033$     | $3.0942 \pm 0.0029$                                        | $3.0943 \pm 0.0031$                                        |
| $n_S$                   | $0.9645 \pm 0.0049$                                                | $0.965\pm0.014$     | $0.9648 \pm 0.0036$   | $0.9646 \pm 0.0016$     | $0.9646 \pm 0.0014$                                        | $0.9646 \pm 0.0013$                                        |
| $H_0[kms^{-1}Mpc^{-1}]$ | $67.27 \pm 0.66$                                                   | $67.5 \pm 2.1$      | $67.29 \pm 0.33$      | $67.28 \pm 0.12$        | $67.28 \pm 0.10$                                           | $67.284 \pm 0.088$                                         |
| $\sigma_8$              | $0.831 \pm 0.013$                                                  | $0.832\pm0.021$     | $0.8314 \pm 0.0028$   | $0.8312 \pm 0.0011$     | $0.83123 \pm 0.00094$                                      | $0.83120{}^{+0.00081}_{-0.00092}$                          |

TABLE I: 68% CL constraints on cosmological parameters in the ΛCDM model.

By considering COrE+ we gain, on most of the cosmological parameters, about an order of magnitude with respect to the Planck experiment, and a factor 3 in average with respect to the LiteBIRD satellite.

In particular, it is impressive the accuracy with which we could constrain H<sub>0</sub>.

|                             | Planck TTTEEE<br>+ lowTEB | PIXIE                       | ${ m LiteBIRD}$             | LiteCORE120               | COrE+<br>baseline           | COrE+<br>extended         |
|-----------------------------|---------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
|                             | + IOWIED                  |                             |                             |                           | Dasenne                     | extended                  |
| $\Sigma m_{ u} \ [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107{}^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078{}^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$         |
| $N_{ m eff}$                | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06 \pm 0.20$             | $3.048\pm0.055$           | $3.047\pm0.043$             | $3.047\pm0.035$           |
| $rac{dlnn_S}{dlnk}$        | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$         | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$         | $0.0001 \pm 0.0022$       |
| r                           | < 0.0463                  | < 0.000304                  | < 0.000300                  | < 0.000243                | < 0.000192                  | < 0.000173                |
| w                           | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$   | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$   | $-1.03{}^{+0.14}_{-0.09}$ |
| $Y_P$                       | $0.250\pm0.014$           | $0.237{}^{+0.057}_{-0.048}$ | $0.245\pm0.012$             | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$         | $0.2454 \pm 0.0023$       |
|                             |                           |                             |                             |                           |                             |                           |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda \text{CDM}$  + one parameter extension model.

## Extensions to LCDM..

|                              | S3wide                    | S3deep                    | S4                        |
|------------------------------|---------------------------|---------------------------|---------------------------|
|                              | + tau05                   | $+ \mathrm{tau} 05$       | + tau 05                  |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                            | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06{}^{+0.19}_{-0.12}$ |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |
|                              |                           |                           |                           |

|                              | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                    | LiteCORE120               | COrE+<br>baseline           | COrE+<br>extended       |
|------------------------------|---------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|-------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107{}^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078{}^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$       |
| $N_{ m eff}$                 | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06\pm0.20$               | $3.048 \pm 0.055$         | $3.047 \pm 0.043$           | $3.047\pm0.035$         |
| $rac{dlnn_S}{dlnk}$         | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$         | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$         | $0.0001 \pm 0.0022$     |
| r                            | < 0.0463                  | < 0.000304                  | < 0.000300                  | < 0.000243                | < 0.000192                  | < 0.000173              |
| w                            | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$   | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$   | $-1.03^{+0.14}_{-0.09}$ |
| $Y_P$                        | $0.250 \pm 0.014$         | $0.237  ^{+0.057}_{-0.048}$ | $0.245\pm0.012$             | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$         | $0.2454 \pm 0.0023$     |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda$ CDM + one parameter extension model.



By considering COrE we can reach the accuracy to have an indication of the total neutrino mass at 1 sigma level.

|                              | S3wide                    | S3deep                    | S4                        |
|------------------------------|---------------------------|---------------------------|---------------------------|
|                              | + tau05                   | + tau 05                  | + tau 05                  |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                            | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06{}^{+0.19}_{-0.12}$ |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |
|                              |                           |                           |                           |

|                              | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                    | LiteCORE120               | COrE+<br>baseline         | $\begin{array}{c} 	ext{COrE} + \\ 	ext{extended} \end{array}$ |
|------------------------------|---------------------------|-----------------------------|-----------------------------|---------------------------|---------------------------|---------------------------------------------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107{}^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$                                             |
| $N_{ m eff}$                 | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06 \pm 0.20$             | $3.048\pm0.055$           | $3.047 \pm 0.043$         | $3.047\pm0.035$                                               |
| $rac{dlnn_S}{dlnk}$         | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$         | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$       | $0.0001 \pm 0.0022$                                           |
| r                            | < 0.0463                  | < 0.000304                  | < 0.000300                  | < 0.000243                | < 0.000192                | < 0.000173                                                    |
| w                            | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$   | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$ | $-1.03^{+0.14}_{-0.09}$                                       |
| $Y_P$                        | $0.250 \pm 0.014$         | $0.237{}^{+0.057}_{-0.048}$ | $0.245\pm0.012$             | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$       | $0.2454 \pm 0.0023$                                           |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda \text{CDM}$  + one parameter extension model.



Ground based telescopes with a tau prior as provided by Planck HFI at low ell cannot be competitive with COrE.



#### By considering a different fiducial value: mnu=0.12eV (IH?)



|                              | PIXIE                 | LiteBIRD                 | LiteCORE120       | COrE+<br>baseline | $\begin{array}{c} 	ext{COrE} + \\ 	ext{extended} \end{array}$ |
|------------------------------|-----------------------|--------------------------|-------------------|-------------------|---------------------------------------------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.417               | $0.144^{+0.058}_{-0.12}$ | $0.118 \pm 0.051$ | $0.117 \pm 0.048$ | $0.118^{+0.051}_{-0.042}$                                     |
| $N_{ m eff}$                 | $4.5{}^{+1.2}_{-2.1}$ | $3.09 \pm 0.23$          | $3.050\pm0.056$   | $3.049 \pm 0.043$ | $3.047 \pm 0.034$                                             |

In this case we have more than 2 sigma detection for COrE+.

|                            | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                    | LiteCORE120               | COrE+<br>baseline           | COrE+<br>extended       |
|----------------------------|---------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|-------------------------|
| $\Sigma m_{ u}  [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107  ^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078{}^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$       |
| $N_{ m eff}$               | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06\pm0.20$               | $3.048\pm0.055$           | $3.047 \pm 0.043$           | $3.047\pm0.035$         |
| $rac{dlnn_S}{dlnk}$       | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$         | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$         | $0.0001 \pm 0.0022$     |
| r                          | < 0.0463                  | < 0.000304                  | < 0.000300                  | < 0.000243                | < 0.000192                  | < 0.000173              |
| w                          | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$   | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$   | $-1.03^{+0.14}_{-0.09}$ |
| $Y_P$                      | $0.250\pm0.014$           | $0.237  ^{+0.057}_{-0.048}$ | $0.245\pm0.012$             | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$         | $0.2454 \pm 0.0023$     |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda \text{CDM}$  + one parameter extension model.

With COrE+ we can constrain the neutrino effective number better than all the other experiments..



|                              | S3wide                    | S3deep                    | S4                        |
|------------------------------|---------------------------|---------------------------|---------------------------|
|                              | + tau05                   | + tau 05                  | + 	au 05                  |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                            | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06^{+0.19}_{-0.12}$   |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |

|                            | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                    | LiteCORE120               | COrE+<br>baseline           | ${ m COrE}+ \ { m extended}$ |
|----------------------------|---------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|------------------------------|
| $\Sigma m_{ u}  [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107  ^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078{}^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$            |
| $N_{ m eff}$               | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06\pm0.20$               | $3.048\pm0.055$           | $3.047 \pm 0.043$           | $3.047\pm0.035$              |
| $rac{dlnn_S}{dlnk}$       | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$         | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$         | $0.0001 \pm 0.0022$          |
| r                          | < 0.0463                  | < 0.000304                  | < 0.000300                  | < 0.000243                | < 0.000192                  | < 0.000173                   |
| w                          | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$   | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$   | $-1.03{}^{+0.14}_{-0.09}$    |
| $Y_P$                      | $0.250 \pm 0.014$         | $0.237  ^{+0.057}_{-0.048}$ | $0.245\pm0.012$             | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$         | $0.2454 \pm 0.0023$          |

..we gain about a factor 4(7) with respect to the Planck polarization..

TABLE I: 68% CL constraints on cosmological parameters in the ΛCDM + one parameter extension model.



|                              | S3wide                    | S3deep                    | S4                        |
|------------------------------|---------------------------|---------------------------|---------------------------|
|                              | + tau05                   | $+ \mathrm{tau} 05$       | + tau 05                  |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                            | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06{}^{+0.19}_{-0.12}$ |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |
|                              |                           |                           |                           |

|                             | Planck TTTEEE<br>+ lowTEB | PIXIE                       | $\operatorname{LiteBIRD}$ | LiteCORE120               | COrE+<br>baseline         | COrE+<br>extended       |
|-----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|-------------------------|
| $\Sigma m_{\nu}  [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$       |
| $N_{ m eff}$                | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06\pm0.20$             | $3.048\pm0.055$           | $3.047 \pm 0.043$         | $3.047\pm0.035$         |
| $rac{dlnn_S}{dlnk}$        | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$       | $0.0001 \pm 0.0022$     |
| r                           | < 0.0463                  | < 0.000304                  | < 0.000300                | < 0.000243                | < 0.000192                | < 0.000173              |
| w                           | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$ | $-1.03^{+0.14}_{-0.09}$ |
| $Y_P$                       | $0.250 \pm 0.014$         | $0.237{}^{+0.057}_{-0.048}$ | $0.245\pm0.012$           | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$       | $0.2454 \pm 0.0023$     |
|                             |                           |                             |                           |                           |                           |                         |

..and a factor 4(7) with respect to LiteBIRD.

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda$ CDM + one parameter extension model.



|                              | S3wide                  | S3deep                    | S4                        |
|------------------------------|-------------------------|---------------------------|---------------------------|
|                              | + tau05                 | + tau 05                  | +tau05                    |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                 | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$         | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$    | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420               | < 0.00439                 | < 0.000492                |
| w                            | $-1.23^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06^{+0.19}_{-0.12}$   |
| $Y_P$                        | $0.2454 \pm 0.0041$     | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |
|                              |                         |                           |                           |

|                              | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                    | LiteCORE120               | COrE+<br>baseline           | ${ m COrE}+ \\ { m extended}$ |
|------------------------------|---------------------------|-----------------------------|-----------------------------|---------------------------|-----------------------------|-------------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107  ^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078  ^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$             |
| $N_{ m eff}$                 | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06 \pm 0.20$             | $3.048\pm0.055$           | $3.047 \pm 0.043$           | $3.047 \pm 0.035$             |
| $rac{dlnn_S}{dlnk}$         | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$         | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$         | $0.0001 \pm 0.0022$           |
| r                            | < 0.0463                  | < 0.000304                  | < 0.000300                  | < 0.000243                | < 0.000192                  | < 0.000173                    |
| w                            | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$   | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$   | $-1.03^{+0.14}_{-0.09}$       |
| $Y_P$                        | $0.250 \pm 0.014$         | $0.237  ^{+0.057}_{-0.048}$ | $0.245\pm0.012$             | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$         | $0.2454 \pm 0.0023$           |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda \text{CDM}$  + one parameter extension model.





|                               | S3wide                    | S3deep                    | S4                        |
|-------------------------------|---------------------------|---------------------------|---------------------------|
|                               | + tau05                   | + tau 05                  | + tau 05                  |
| $\Sigma m_{\nu} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                  | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$          | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                             | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                             | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06^{+0.19}_{-0.12}$   |
| $Y_P$                         | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |
|                               |                           |                           |                           |

|                              | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                  | LiteCORE120               | COrE+<br>baseline         | COrE+<br>extended       |
|------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|-------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$       |
| $N_{ m eff}$                 | $2.99 \pm 0.20$           | $3.9_{-1.9}^{+1.0}$         | $3.06 \pm 0.20$           | $3.048\pm0.055$           | $3.047 \pm 0.043$         | $3.047\pm0.035$         |
| $rac{dlnn_S}{dlnk}$         | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$       | $0.0001 \pm 0.0022$     |
| r                            | < 0.0463                  | < 0.000304                  | < 0.000300                | < 0.000243                | < 0.000192                | < 0.000173              |
| w                            | $-1.19  ^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$ | $-1.03^{+0.14}_{-0.09}$ |
| $Y_P$                        | $0.250\pm0.014$           | $0.237{}^{+0.057}_{-0.048}$ | $0.245\pm0.012$           | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$       | $0.2454 \pm 0.0023$     |

TABLE I: 68% CL constraints on cosmological parameters in the ΛCDM + one parameter extension model.

# With COrE+ we gain more than a factor 3 with respect to the Planck polarization.



|                              | S3wide                    | S3deep                    | S4                          |
|------------------------------|---------------------------|---------------------------|-----------------------------|
|                              | + tau05                   | $+ \mathrm{tau} 05$       | + tau 05                    |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085{}^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$             |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$         |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                  |
| $oldsymbol{w}$               | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06^{+0.19}_{-0.12}$     |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$         |
|                              |                           |                           |                             |

| $N_{\rm eff}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                           |                             |                           |                           |                             |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|---------------------------|
| $N_{\rm eff}$ 2.99 ± 0.20 3.9 $_{-1.9}^{+1.0}$ 3.06 ± 0.20 3.048 ± 0.055 3.047 ± 0.043 3.047 ± 0.03 $\frac{d lnn_S}{d lnk}$ -0.0057 ± 0.0071 -0.001 ± 0.024 0.0003 ± 0.0080 -0.0001 ± 0.0028 0.0001 ± 0.0024 0.0001 ± 0.002 $r$ < 0.0463 < 0.000304 < 0.000300 < 0.000243 < 0.000192 < 0.000173 $r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                           | PIXIE                       | LiteBIRD                  | LiteCORE120               | •                           | •                         |
| $\frac{dlnn_S}{dlnk} -0.0057 \pm 0.0071 -0.001 \pm 0.024 \ 0.0003 \pm 0.0080 \ -0.0001 \pm 0.0028 \ 0.0001 \pm 0.0024 \ 0.0001 \pm 0.00$ | $\Sigma m_{ u}  [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078{}^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$         |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N_{ m eff}$               | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06 \pm 0.20$           | $3.048\pm0.055$           | $3.047\pm0.043$             | $3.047\pm0.035$           |
| $w \qquad -1.19_{-0.42}^{+0.54} \qquad -1.10_{-0.14}^{+0.25} \qquad -1.18_{-0.24}^{+0.40} \qquad -1.09_{-0.11}^{+0.23} \qquad -1.05_{-0.11}^{+0.17} \qquad -1.03_{-0.09}^{+0.14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $rac{dlnn_S}{dlnk}$       | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$         | $0.0001 \pm 0.0022$       |
| 0.12 0.11 0.21 0.11 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r                          | < 0.0463                  | < 0.000304                  | < 0.000300                | < 0.000243                | < 0.000192                  | < 0.000173                |
| $Y_P$ 0.250 $\pm$ 0.014 0.237 $^{+0.057}_{-0.048}$ 0.245 $\pm$ 0.012 0.2453 $\pm$ 0.0037 0.2454 $\pm$ 0.0029 0.2454 $\pm$ 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | w                          | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$   | $-1.03{}^{+0.14}_{-0.09}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $Y_P$                      | $0.250\pm0.014$           | $0.237{}^{+0.057}_{-0.048}$ | $0.245\pm0.012$           | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$         | $0.2454 \pm 0.0023$       |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda$ CDM + one parameter extension model.



The ground based experiments cannot constrain the running with the same accuracy, but Stage-IV can give very close results.

|                            | S3wide                    | S3deep                    | S4                          |
|----------------------------|---------------------------|---------------------------|-----------------------------|
|                            | + tau 05                  | + tau 05                  | + tau 05                    |
| $\Sigma m_{ u}  [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085{}^{+0.035}_{-0.073}$ |
| $N_{ m eff}$               | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$             |
| $rac{dlnn_S}{dlnk}$       | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$         |
| r                          | < 0.00420                 | < 0.00439                 | < 0.000492                  |
| w                          | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06^{+0.19}_{-0.12}$     |
| $Y_P$                      | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$         |
|                            |                           |                           |                             |

|                              | Planck TTTEEE<br>+ lowTEB | PIXIE                     | LiteBIRD                  | LiteCORE120               | COrE+<br>baseline         | COrE+<br>extended       |
|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.188                   | < 0.305                   | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$       |
| $N_{ m eff}$                 | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$       | $3.06 \pm 0.20$           | $3.048\pm0.055$           | $3.047\pm0.043$           | $3.047\pm0.035$         |
| $rac{dlnn_S}{dlnk}$         | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$        | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$       | $0.0001 \pm 0.0022$     |
| r                            | < 0.0463                  | < 0.000304                | < 0.000300                | < 0.000243                | < 0.000192                | < 0.000173              |
| w                            | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05^{+0.17}_{-0.11}$   | $-1.03^{+0.14}_{-0.09}$ |
| $Y_P$                        | $0.250\pm0.014$           | $0.237^{+0.057}_{-0.048}$ | $0.245\pm0.012$           | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$       | $0.2454 \pm 0.0023$     |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda \mathrm{CDM}$  + one parameter extension model.

CorE in all the configurations can constrain dark energy better than all the other experiments.



|                             | S3wide                    | S3deep                    | S4                        |
|-----------------------------|---------------------------|---------------------------|---------------------------|
|                             | + tau05                   | + tau 05                  | +tau05                    |
| $\Sigma m_{\nu}  [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$        | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                           | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                           | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06{}^{+0.19}_{-0.12}$ |
| $Y_P$                       | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |
|                             |                           |                           |                           |

|                              | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                  | LiteCORE120               | COrE+<br>baseline           | COrE+<br>extended       |
|------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|-----------------------------|-------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078{}^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$       |
| $N_{ m eff}$                 | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06\pm0.20$             | $3.048\pm0.055$           | $3.047\pm0.043$             | $3.047\pm0.035$         |
| $rac{dlnn_S}{dlnk}$         | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$         | $0.0001 \pm 0.0022$     |
| r                            | < 0.0463                  | < 0.000304                  | < 0.000300                | < 0.000243                | < 0.000192                  | < 0.000173              |
| w                            | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05^{+0.17}_{-0.11}$     | $-1.03^{+0.14}_{-0.09}$ |
| $Y_P$                        | $0.250 \pm 0.014$         | $0.237{}^{+0.057}_{-0.048}$ | $0.245\pm0.012$           | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$         | $0.2454 \pm 0.0023$     |

..and also with respect to all the ground based telescopes.

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda$ CDM + one parameter extension model.



|                              | S3wide                    | S3deep                    | S4                        |
|------------------------------|---------------------------|---------------------------|---------------------------|
|                              | + tau 05                  | $+ \mathrm{tau} 05$       | $+ { m tau} 05$           |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                            | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06^{+0.19}_{-0.12}$   |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |

|                            | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                  | LiteCORE120               | COrE+<br>baseline         | COrE+<br>extended         |
|----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| $\Sigma m_{ u}  [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$         |
| $N_{ m eff}$               | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06 \pm 0.20$           | $3.048\pm0.055$           | $3.047\pm0.043$           | $3.047\pm0.035$           |
| $rac{dlnn_S}{dlnk}$       | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$       | $0.0001 \pm 0.0022$       |
| r                          | < 0.0463                  | < 0.000304                  | < 0.000300                | < 0.000243                | < 0.000192                | < 0.000173                |
| w                          | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$ | $-1.03{}^{+0.14}_{-0.09}$ |
| $Y_P$                      | $0.250\pm0.014$           | $0.237{}^{+0.057}_{-0.048}$ | $0.245 \pm 0.012$         | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$       | $0.2454 \pm 0.0023$       |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda \text{CDM}$  + one parameter extension model.



 $n_s$ 

Also in the BBN sector we can improve Planck constraints on the primordial helium abundance by a factor 6.

|                              | S3wide                    | S3deep                    | S4                        |
|------------------------------|---------------------------|---------------------------|---------------------------|
|                              | + tau05                   | + tau 05                  | + 	au 05                  |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                            | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06^{+0.19}_{-0.12}$   |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |

|                              | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                  | LiteCORE120               | COrE+<br>baseline         | COrE+<br>extended       |
|------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|-------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$       |
| $N_{ m eff}$                 | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06 \pm 0.20$           | $3.048\pm0.055$           | $3.047\pm0.043$           | $3.047\pm0.035$         |
| $rac{dlnn_S}{dlnk}$         | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$       | $0.0001 \pm 0.0022$     |
| r                            | < 0.0463                  | < 0.000304                  | < 0.000300                | < 0.000243                | < 0.000192                | < 0.000173              |
| w                            | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$ | $-1.03^{+0.14}_{-0.09}$ |
| $Y_P$                        | $0.250\pm0.014$           | $0.237{}^{+0.057}_{-0.048}$ | $0.245\pm0.012$           | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$       | $0.2454 \pm 0.0023$     |
|                              |                           |                             |                           |                           |                           | ·                       |

Stage-IV is competitive with COrE+ baseline in constraining the primordial helium abundance.

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda$ CDM + one parameter extension model.



|                              | S3wide<br>+ tau05         | S3deep<br>+tau05          | S4<br>+tau05              |
|------------------------------|---------------------------|---------------------------|---------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                            | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06{}^{+0.19}_{-0.12}$ |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |

|                            | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                  | LiteCORE120               | COrE+<br>baseline         | $\begin{array}{c} 	ext{COrE} + \\ 	ext{extended} \end{array}$ |
|----------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|---------------------------------------------------------------|
| $\Sigma m_{ u}  [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$                                             |
| $N_{ m eff}$               | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06 \pm 0.20$           | $3.048\pm0.055$           | $3.047\pm0.043$           | $3.047\pm0.035$                                               |
| $rac{dlnn_S}{dlnk}$       | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$       | $0.0001 \pm 0.0022$                                           |
| r                          | < 0.0463                  | < 0.000304                  | < 0.000300                | < 0.000243                | < 0.000192                | < 0.000173                                                    |
| w                          | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05{}^{+0.17}_{-0.11}$ | $-1.03^{+0.14}_{-0.09}$                                       |
| $Y_P$                      | $0.250 \pm 0.014$         | $0.237  ^{+0.057}_{-0.048}$ | $0.245\pm0.012$           | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$       | $0.2454 \pm 0.0023$                                           |
|                            |                           |                             |                           |                           |                           |                                                               |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda \text{CDM}$  + one parameter extension model.

With new satellite experiments we gain more than 2 order of magnitude with respect to the Planck polarization.



EDV, F.R.Bouchet, in prep.

|                              | S3wide                    | S3deep                    | S4                        |
|------------------------------|---------------------------|---------------------------|---------------------------|
|                              | + tau05                   | $+ \mathrm{tau} 05$       | + tau 05                  |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                   | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$           | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$      | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420                 | < 0.00439                 | < 0.000492                |
| w                            | $-1.23{}^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06{}^{+0.19}_{-0.12}$ |
| $Y_P$                        | $0.2454 \pm 0.0041$       | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |
|                              |                           |                           |                           |

These results are without considering delensing.

|                              | Planck TTTEEE<br>+ lowTEB | PIXIE                       | LiteBIRD                  | LiteCORE120               | COrE+<br>baseline         | COrE+<br>extended       |
|------------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|-------------------------|
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.188                   | < 0.305                     | $0.107^{+0.038}_{-0.099}$ | $0.083^{+0.041}_{-0.056}$ | $0.078^{+0.039}_{-0.054}$ | $0.079 \pm 0.041$       |
| $N_{ m eff}$                 | $2.99 \pm 0.20$           | $3.9^{+1.0}_{-1.9}$         | $3.06 \pm 0.20$           | $3.048\pm0.055$           | $3.047\pm0.043$           | $3.047\pm0.035$         |
| $rac{dlnn_S}{dlnk}$         | $-0.0057 \pm 0.0071$      | $-0.001 \pm 0.024$          | $0.0003 \pm 0.0080$       | $-0.0001 \pm 0.0028$      | $0.0001 \pm 0.0024$       | $0.0001 \pm 0.0022$     |
| r                            | < 0.0463                  | < 0.000304                  | < 0.000300                | < 0.000243                | < 0.000192                | < 0.000173              |
| w                            | $-1.19{}^{+0.54}_{-0.42}$ | $-1.10{}^{+0.25}_{-0.14}$   | $-1.18{}^{+0.40}_{-0.24}$ | $-1.09{}^{+0.23}_{-0.11}$ | $-1.05^{+0.17}_{-0.11}$   | $-1.03^{+0.14}_{-0.09}$ |
| $Y_P$                        | $0.250\pm0.014$           | $0.237{}^{+0.057}_{-0.048}$ | $0.245\pm0.012$           | $0.2453 \pm 0.0037$       | $0.2454 \pm 0.0029$       | $0.2454 \pm 0.0023$     |
|                              |                           |                             |                           |                           |                           |                         |

TABLE I: 68% CL constraints on cosmological parameters in the  $\Lambda \text{CDM}$  + one parameter extension model.

..and COrE+ can
do more than a
factor 2 better than
Stage-IV, without
considering
delensing.



|                              | S3wide                  | S3deep                    | S4                        |
|------------------------------|-------------------------|---------------------------|---------------------------|
|                              | + tau05                 | $+ \mathrm{tau} 05$       | +tau05                    |
| $\Sigma m_{ u} \; [{ m eV}]$ | < 0.151                 | < 0.211                   | $0.085^{+0.035}_{-0.073}$ |
| $N_{ m eff}$                 | $3.048\pm0.068$         | $3.06 \pm 0.14$           | $3.046\pm0.043$           |
| $rac{dlnn_S}{dlnk}$         | $-0.0001 \pm 0.0040$    | $0.0002 \pm 0.0089$       | $0.0000 \pm 0.0029$       |
| r                            | < 0.00420               | < 0.00439                 | < 0.000492                |
| w                            | $-1.23^{+0.44}_{-0.24}$ | $-1.25{}^{+0.46}_{-0.39}$ | $-1.06^{+0.19}_{-0.12}$   |
| $Y_P$                        | $0.2454 \pm 0.0041$     | $0.2446 \pm 0.0089$       | $0.2452 \pm 0.0029$       |
|                              |                         |                           |                           |

#### w/o delensing



TABLE I: 68% CL constraints on r in the LCDM + r model, for different fiducial values.



0.0016 0.0012 0.0008 0.0004 0.0000 0.925 0.950 0.975 1.000 0.98



We can constrain at about 3 sigma r until 10^-3 without delensing. We have no significant difference between the different experiments.

|           | PIXIE                             | $\operatorname{LiteBIRD}$         | LiteCORE120                       | COrE+<br>baseline                 | $\begin{array}{c} 	ext{COrE} + \\ 	ext{extended} \end{array}$ |
|-----------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------------------------------|
| r[0]      | < 0.000304                        | < 0.000269                        | < 0.000170                        | < 0.0000990                       | < 0.0000596                                                   |
| r[0.01]   | $0.0101 \pm 0.0016$               | $0.01002 \pm 0.00085$             | $0.00999 \pm 0.00058$             | $0.00998 \pm 0.00042$             | $0.00998{}^{+0.00030}_{-0.00034}$                             |
| r[0.001]  | $0.00125{}^{+0.00036}_{-0.00070}$ | $0.00115{}^{+0.00035}_{-0.00053}$ | $0.00106{}^{+0.00028}_{-0.00034}$ | $0.00103^{+0.00020}_{-0.00025}$   | $0.00102 \pm 0.00015$                                         |
| r[0.0001] | < 0.000420                        | < 0.000364                        | < 0.000264                        | $0.00016{}^{+0.00005}_{-0.00014}$ | $0.000132{}^{+0.000047}_{-0.000093}$                          |

PIXIE LiteBIRD LiteCORE120 CORE baseline 0.0012 CORE extended ≥ 0.0008 0.0004 0.0000 0.925 0.950 0.975 1.000

TABLE I: 68% CL constraints on r in the LCDM + r model, for different fiducial values.





Considering the internal delensing, we gain a factor 2 between COrE+ and LiteBIRD, constraining a possible r=10^-3 at about 5 sigma level. An indication at 1 sigma for  $r=10^-4$  starts to appear with COrE.

#### w/o delensing

|                   | PIXIE                                          | LiteBIRD                                    | LiteCORE120                                                  | COrE+                                         | COrE+                                                    |
|-------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
|                   |                                                |                                             |                                                              | baseline                                      | extended                                                 |
| $r[0.01] \ n_T$   | $0.0118 ^{+0.0031}_{-0.0058} \\ 0.03 \pm 0.14$ | $0.0109_{-0.0035}^{+0.0022}\\0.02{\pm}0.12$ | $0.0109  {}^{+0.0022}_{-0.0032} \\ 0.03  {}^{+0.13}_{-0.11}$ | $0.0105^{+0.0019}_{-0.0028}\\0.01\pm0.11$     | $0.0105^{+0.0018}_{-0.0025}\\0.02\pm0.10$                |
| $r[0.001] \ n_T$  | $< 0.00864 \\ 0.50^{+0.28}_{-0.47}$            | $< 0.00395 \ 0.41^{+0.21}_{-0.56}$          | $0.0022^{+0.0005}_{-0.0021}\\0.16\pm0.28$                    | $0.0019_{-0.0016}^{+0.0005} \\ 0.12 \pm 0.26$ | $0.0016  ^{+0.0005}_{-0.0013} \\ 0.08  ^{+0.24}_{-0.22}$ |
| $r[0.0001] \ n_T$ | < 0.122 > 2.24                                 | < 0.0455 > 2.19                             | < 0.0270 > 2.12                                              | < 0.0180<br>> 2.06                            | < 0.0145<br>> 2.00                                       |

TABLE II: 68% CL constraints on r and  $n_T$  in a  $LCDM + r + n_T$  model, for different fiducial values. EDV, F.R.Bouchet, in prep.



When varying also  $n_T$ , while we have no difference with a fiducial  $r=10^-2$ , COrE+ starts to have an indication at 1 sigma for a fiducial  $r=10^-3$ .

#### w/o delensing

|                   | PIXIE                                           | LiteBIRD                                  | LiteCORE120                                                                    | COrE+                                     | COrE+                                                    |
|-------------------|-------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|
|                   |                                                 |                                           |                                                                                | baseline                                  | extended                                                 |
| $r[0.01] \ n_T$   | $0.0118  ^{+0.0031}_{-0.0058} \\ 0.03 \pm 0.14$ | $0.0109_{-0.0035}^{+0.0022}\\0.02\pm0.12$ | $0.0109_{-0.0032}^{+0.0022}\\0.03_{-0.11}^{+0.13}$                             | $0.0105^{+0.0019}_{-0.0028}\\0.01\pm0.11$ | $0.0105^{+0.0018}_{-0.0025}\\0.02\pm0.10$                |
| $r[0.001] \ n_T$  | $< 0.00864 \\ 0.50^{+0.28}_{-0.47}$             | $< 0.00395 \ 0.41^{+0.21}_{-0.56}$        | $\begin{array}{c} 0.0022  {}^{+0.0005}_{-0.0021} \\ 0.16 \pm 0.28 \end{array}$ | $0.0019^{+0.0005}_{-0.0016}\\0.12\pm0.26$ | $0.0016  ^{+0.0005}_{-0.0013} \\ 0.08  ^{+0.24}_{-0.22}$ |
| $r[0.0001] \ n_T$ | < 0.122 > 2.24                                  | < 0.0455 > 2.19                           | < 0.0270 > 2.12                                                                | < 0.0180 > 2.06                           | < 0.0145<br>> 2.00                                       |

TABLE II: 68% CL constraints on r and  $n_T$  in a  $LCDM + r + n_T$  model, for different fiducial values. EDV, F.R.Bouchet, in prep.



We have a factor 2 between COrE+ and LiteBIRD when  $r=10^-4$ .

|                   | PIXIE                                     | LiteBIRD                                  | LiteCORE120                                              | COrE+<br>baseline                                                                | $\begin{array}{c} 	ext{COrE}+ \\ 	ext{extended} \end{array}$                     |
|-------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| $r[0.01] \ n_T$   | $0.0118^{+0.0031}_{-0.0058}\\0.03\pm0.14$ | $0.0109^{+0.0023}_{-0.0034}\\0.02\pm0.12$ | $0.0106^{+0.0020}_{-0.0026}\\0.02\pm0.10$                | $\begin{array}{c} 0.0104  {}^{+0.0016}_{-0.0021} \\ 0.014 \pm 0.091 \end{array}$ | $\begin{array}{c} 0.0103  {}^{+0.0014}_{-0.0017} \\ 0.010 \pm 0.080 \end{array}$ |
| $r[0.001] \ n_T$  | $< 0.00864 \\ 0.50^{+0.28}_{-0.47}$       | $< 0.00327 \\ 0.30^{+0.24}_{-0.43}$       | $0.0016  ^{+0.0005}_{-0.0013} \\ 0.09  ^{+0.24}_{-0.21}$ | $0.00132^{+0.00038}_{-0.00081}\\0.06\pm0.18$                                     | $0.00112^{+0.00029}_{-0.00049}\\0.02\pm0.14$                                     |
| $r[0.0001] \ n_T$ | < 0.122 > 2.24                            | < 0.0418<br>> 2.16                        | < 0.0184 > 2.06                                          | < 0.0107 > 2.01                                                                  | < 0.00584<br>> 1.61                                                              |

TABLE II: 68% CL constraints on r and  $n_T$  in a  $LCDM + r + n_T$  model, for different fiducial values. EDV, F.R.Bouchet, in prep.



By considering the internal delensing, we gain a lot of sensitivity with COrE+..

|                   | PIXIE                                                                        | LiteBIRD                                                                       | LiteCORE120                                                                  | COrE+                                                                            | COrE+                                                                            |
|-------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                   |                                                                              |                                                                                |                                                                              | baseline                                                                         | extended                                                                         |
| $r[0.01] \ n_T$   | $\begin{array}{c} 0.0118  ^{+0.0031}_{-0.0058} \\ 0.03 \pm 0.14 \end{array}$ | $\begin{array}{c} 0.0109  {}^{+0.0023}_{-0.0034} \\ 0.02 \pm 0.12 \end{array}$ | $\begin{array}{c} 0.0106  ^{+0.0020}_{-0.0026} \\ 0.02 \pm 0.10 \end{array}$ | $\begin{array}{c} 0.0104  {}^{+0.0016}_{-0.0021} \\ 0.014 \pm 0.091 \end{array}$ | $\begin{array}{c} 0.0103  {}^{+0.0014}_{-0.0017} \\ 0.010 \pm 0.080 \end{array}$ |
| $r[0.001] \ n_T$  | $< 0.00864 \\ 0.50 ^{+0.28}_{-0.47}$                                         | $< 0.00327 \\ 0.30^{+0.24}_{-0.43}$                                            | $0.0016  ^{+0.0005}_{-0.0013} \\ 0.09  ^{+0.24}_{-0.21}$                     | $0.00132^{+0.00038}_{-0.00081}\\0.06\pm0.18$                                     | $0.00112^{+0.00029}_{-0.00049}\\0.02{\pm}0.14$                                   |
| $r[0.0001] \ n_T$ | < 0.122 > 2.24                                                               | < 0.0418<br>> 2.16                                                             | < 0.0184 > 2.06                                                              | < 0.0107 > 2.01                                                                  | < 0.00584<br>> 1.61                                                              |

TABLE II: 68% CL constraints on r and  $n_T$  in a  $LCDM + r + n_T$  model, for different fiducial values. EDV, F.R.Bouchet, in prep.



In fact it is the only experiment to can constrain r=10^-3 at more than 2 sigma level..

|                   | PIXIE                                                                          | LiteBIRD                                  | LiteCORE120                                                                  | COrE+<br>baseline                                                                | COrE+<br>extended                                                              |
|-------------------|--------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                   |                                                                                |                                           |                                                                              | Daseille                                                                         | extended                                                                       |
| $r[0.01] \ n_T$   | $\begin{array}{c} 0.0118  {}^{+0.0031}_{-0.0058} \\ 0.03 \pm 0.14 \end{array}$ | $0.0109^{+0.0023}_{-0.0034}\\0.02\pm0.12$ | $\begin{array}{c} 0.0106  ^{+0.0020}_{-0.0026} \\ 0.02 \pm 0.10 \end{array}$ | $\begin{array}{c} 0.0104  {}^{+0.0016}_{-0.0021} \\ 0.014 \pm 0.091 \end{array}$ | $\begin{array}{c} 0.0103  ^{+0.0014}_{-0.0017} \\ 0.010 \pm 0.080 \end{array}$ |
| $r[0.001] \ n_T$  | $< 0.00864 \\ 0.50 ^{+0.28}_{-0.47}$                                           | $< 0.00327 \\ 0.30^{+0.24}_{-0.43}$       | $0.0016  ^{+0.0005}_{-0.0013} \\ 0.09  ^{+0.24}_{-0.21}$                     | $0.00132^{+0.00038}_{-0.00081}\\0.06\pm0.18$                                     | $0.00112^{+0.00029}_{-0.00049}\\0.02\pm0.14$                                   |
| $r[0.0001] \ n_T$ | < 0.122 > 2.24                                                                 | < 0.0418<br>> 2.16                        | < 0.0184 > 2.06                                                              | < 0.0107 > 2.01                                                                  | < 0.00584<br>> 1.61                                                            |

TABLE II: 68% CL constraints on r and  $n_T$  in a  $LCDM + r + n_T$  model, for different fiducial values. EDV, F.R.Bouchet, in prep.



Also when  $n_T$  is varying.

### Conclusions

- In a LCDM model COrE+ can do a factor 3 better than LiteBIRD on cosmological parameters. In particular σ(H₀)=0.088 km/s/Mpc.
- With COrE+  $\sigma(\Sigma m_v)$ =0.04eV vs  $\sigma(\Sigma m_v)$ =0.06eV of LiteBIRD or Stage-IV.
- With COrE+  $\sigma(N_{eff})$ =0.04 vs  $\sigma(N_{eff})$ =0.20 of LiteBIRD.
- With COrE+  $\sigma(w)=0.11$  vs  $\sigma(w)=0.30$  of LiteBIRD or  $\sigma(w)=0.15$  of Stage-IV.
- Considering the CMBxCMB delensing, COrE+ can do a factor 2 better than LiteBIRD for the tensor-to-scalar ratio, constraining a possible r=10^-3 at 5 sigma level.
- Considering the CMBxCMB delensing, COrE+ extended can constrain r=10^-3 at more than 2 sigma level, also when n<sub>T</sub> is varying at the same time, while with LiteBIRD there is only an upper limit.

#### Higgs Inflation

Constraints on slow roll parameters for a Higgs Inflation model with fiducial  $r_{fid}$ =3.58 x 10<sup>-3</sup> ( $n_s$ = 0.9645)

$$egin{aligned} \epsilon_1 &\simeq rac{M_{ ext{Pl}}^2}{2} \left(rac{V_\phi}{V}
ight)^2, \ &\epsilon_2 &\simeq 2 M_{ ext{Pl}}^2 \left[ \left(rac{V_\phi}{V}
ight)^2 - rac{V_{\phi\phi}}{V} 
ight], \ &\epsilon_2 \epsilon_3 &\simeq 2 M_{ ext{Pl}}^4 \left[ rac{V_{\phi\phi\phi}V_\phi}{V^2} - 3rac{V_{\phi\phi}}{V} \left(rac{V_\phi}{V}
ight)^2 + 2 \left(rac{V_\phi}{V}
ight)^4 
ight] \end{aligned}$$

$$V(\phi) = M^4 \left( 1 - e^{-\sqrt{2/3}\phi/M_{\rm Pl}} \right)^2$$







$$\epsilon_1 = \frac{4}{3} \left( 1 - e^{\sqrt{2/3}x} \right)^{-2}, \qquad \epsilon_2 = \frac{2}{3} \left[ \sinh\left(\frac{x}{\sqrt{6}}\right) \right]^{-2}$$

$$\epsilon_3 = \frac{2}{3} \left[ \coth\left(\frac{x}{\sqrt{6}}\right) - 1 \right] \coth\left(\frac{x}{\sqrt{6}}\right).$$

## Delensing methods

We compare 2 CMBxCMB delensing methods:

- Lensing reconstruction with quadratic estimator (A. Lewis and A. Challinor, arXiv:astro-ph/0601594v4), provided by A. Challinor.
- The iterative delensing estimator using the CMB polarization, given by (K. M. Smith et al., arXiv:1010.0048v2)

$$B_{\ell_1 m_1}^{\text{del}} = B_{\ell_1 m_1}^{\text{obs}} - \sum_{\ell_2 m_2 \ell m} f_{\ell_1 \ell_2 \ell}^{EB} \begin{pmatrix} \ell_1 & \ell_2 & \ell \\ m_1 & m_2 & m \end{pmatrix} \begin{pmatrix} C_{\ell_2}^{EE} E_{\ell_2 m_2}^{\text{obs*}} \\ C_{\ell_2}^{EE} + N_{\ell_2}^{EE} \end{pmatrix} \begin{pmatrix} C_{\ell}^{\phi \phi} \phi_{\ell m}^{\text{obs*}} \\ C_{\ell}^{\phi \phi} + N_{\ell}^{\phi \phi} \end{pmatrix}$$

Where 
$$N_\ell^{EE} = N_\ell^{BB} = \Delta_P^2 \exp\left(rac{ heta_{
m FWHM}^2\ell^2}{8\log 2}
ight)$$

$$N_{\ell}^{\phi\phi} = \left[ \frac{1}{2\ell + 1} \sum_{\ell_1\ell_2} |f_{\ell_1\ell_2}^{EB}|^2 \left( \frac{1}{C_{\ell_1}^{BB} + N_{\ell_1}^{BB}} \right) \left( \frac{(C_{\ell_2}^{EE})^2}{C_{\ell_2}^{EE} + N_{\ell_2}^{EE}} \right) \right]^{-1}$$

## Delensing methods

$$N_{\ell}^{\phi\phi} = \left[ \frac{1}{2\ell + 1} \sum_{\ell_1\ell_2} |f_{\ell_1\ell_2\ell}^{EB}|^2 \left( \frac{1}{C_{\ell_1}^{BB} + N_{\ell_1}^{BB}} \right) \left( \frac{(C_{\ell_2}^{EE})^2}{C_{\ell_2}^{EE} + N_{\ell_2}^{EE}} \right) \right]^{-1}$$

We compare the gain we have by using one single iteration with respect to several iterations, where to replace each time the obtained delensed B modes, until to reach (J. Errard et al., arXiv:1509.06770v3):

$$\left| \sum_{\ell} \frac{N_{\ell}^{\phi\phi,i} - N_{\ell}^{\phi\phi,i-1}}{N_{\ell}^{\phi\phi,i}} \right| \le 1\%.$$

Finally, we define the delensing factor to evaluate the performance of the experiments:

$$\alpha = \frac{\sum_{\ell=\ell_{min}}^{\ell=500} C_{\ell}^{BB,del}}{\sum_{\ell=\ell_{min}}^{\ell=500} C_{\ell}^{BB,lens}}$$

## Delensing methods

|                        | ne 6arcmin<br>30arcmin          | 1.5uK QE=0.3070762<br>2.5uK QE=0.4136011<br>4.5uK QE=0.9126866<br>4.2uK QE=1 | 1iter=0.4039403<br>1iter=0.5225181<br>1iter=0.9449672 | moreiter=0.3312646<br>moreiter=0.4968156<br>moreiter=0.9402915 |
|------------------------|---------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|
| LiteCORE120            | 7.5armin                        | 3.75uK                                                                       | 1iter=0.5699989                                       | moreiter=0.5518946                                             |
| S3wide<br>S3deep<br>S4 | 1.4arcmin<br>1arcmin<br>3arcmin | 5.7uK                                                                        | 1iter=0.7800362<br>1iter=0.5674735<br>1iter=0.3218611 | moreiter=0.7851662<br>moreiter=0.5577870<br>moreiter=0.2506848 |

$$\alpha = \frac{\sum_{\ell=\ell_{min}}^{\ell=500} C_{\ell}^{BB,del}}{\sum_{\ell=\ell_{min}}^{\ell=500} C_{\ell}^{BB,lens}}$$



Generalized Dark Matter for Neutrinos

## Cold Dark Matter Isocurvature Perturbation



|                            | PIXIE                        | LiteBIRD                    | LiteCORE120         | COrE+                       | COrE+               |
|----------------------------|------------------------------|-----------------------------|---------------------|-----------------------------|---------------------|
|                            | +DESI                        | +DESI                       | +DESI               | baseline+DESI               | extended+DESI       |
| $\Sigma m_{ u}  [{ m eV}]$ | < 0.158                      | $0.071 \pm 0.031$           | $0.072 \pm 0.021$   | $0.071{}^{+0.022}_{-0.020}$ | $0.073\pm0.020$     |
| $N_{ m eff}$               | $3.5^{+0.8}_{-1.4}$          | $3.05 \pm 0.15$             | $3.048\pm0.051$     | $3.046 \pm 0.041$           | $3.046\pm0.033$     |
| $rac{dlnn_S}{dlnk}$       | $-0.003 \pm 0.022$           | $0.0002 \pm 0.0023$         | $0.0003 \pm 0.0080$ | $0.0001 \pm 0.0024$         | $0.0000 \pm 0.0022$ |
| r                          | < 0.000303                   | < 0.000300                  | < 0.000241          | < 0.000188                  | < 0.000172          |
| w                          | $-1.005{}^{+0.065}_{-0.050}$ | $-1.003 \pm 0.027$          | $-1.001 \pm 0.020$  | $-1.001 \pm 0.019$          | $-1.000 \pm 0.018$  |
| $Y_P$                      | $0.237  ^{+0.047}_{-0.039}$  | $0.245{}^{+0.010}_{-0.012}$ | $0.2452 \pm 0.0037$ | $0.2453 \pm 0.0029$         | $0.2454 \pm 0.0023$ |

| S3wide                       | S3deep                                                                                                                    | S4                                                                                                                                                                                                                                                                                                            |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| + tau05+DESI                 | + tau 05 + DESI                                                                                                           | + tau 05 + DESI                                                                                                                                                                                                                                                                                               |
| $0.073^{+0.035}_{-0.043}$    | $0.073^{+0.034}_{-0.058}$                                                                                                 | $0.072 \pm 0.022$                                                                                                                                                                                                                                                                                             |
| $3.046\pm0.065$              | $3.06 \pm 0.12$                                                                                                           | $3.046\pm0.040$                                                                                                                                                                                                                                                                                               |
| $-0.0001 \pm 0.0040$         | $0.0003 \pm 0.0089$                                                                                                       | $0.0000 \pm 0.0029$                                                                                                                                                                                                                                                                                           |
| < 0.00416                    | < 0.00428                                                                                                                 | < 0.000488                                                                                                                                                                                                                                                                                                    |
| $-1.004{}^{+0.034}_{-0.029}$ | $-1.006{}^{+0.040}_{-0.029}$                                                                                              | $-0.999 \pm 0.019$                                                                                                                                                                                                                                                                                            |
| $0.2454 \pm 0.0042$          | $0.2446 \pm 0.0090$                                                                                                       | $0.2452 \pm 0.0029$                                                                                                                                                                                                                                                                                           |
|                              | $+ 	au 05 + DESI$ $0.073^{+0.035}_{-0.043}$ $3.046 \pm 0.065$ $-0.0001 \pm 0.0040$ $< 0.00416$ $-1.004^{+0.034}_{-0.029}$ | $\begin{array}{cccc} + \ tau05 + DESI & +tau05 + DESI \\ \hline 0.073 ^{+0.035}_{-0.043} & 0.073 ^{+0.034}_{-0.058} \\ 3.046 \pm 0.065 & 3.06 \pm 0.12 \\ \hline -0.0001 \pm 0.0040 & 0.0003 \pm 0.0089 \\ < 0.00416 & < 0.00428 \\ \hline -1.004 ^{+0.034}_{-0.029} & -1.006 ^{+0.040}_{-0.029} \end{array}$ |