DE LA RECHERCHE À L'INDUSTRIE

Galaxy clusters

J.-B. Melin CEA Saclay, France

Towards a next space probe for CMB observations and cosmic origins exploration 2016 May 19

Hot gas

Dark matter

 few % of total mass
 15 %
 80 %

Optical	X-rays, CMB	Indirect
---------	-------------	----------

Hot gas

Dark matter

 few % of total mass
 15 %
 80 %

Optical X-rays, CMB Indirect

Hot gas

Dark matter

 few % of total mass
 15 %
 80 %

Optical X-rays, CMB Indirect

dust

Hot gas

Dark matter

SZ

few % of total mass 15 %

CMB halo lensing

80 %

M4 proposal (60-800 GHz, 1.5m tel.)

COrE+: Cluster Science The COrE+ Collaboration, Jean Baptiste Melin, James G. Bartlett, ...

Received ; accepted

ABSTRACT

This is the abstract.

Key words. Galaxy Clusters

1. Introduction

Link to Mission and Instrument paper.

Study the *COrE*+ only and the *COrE*+ + CMB-S4 cases.

2. Simulations

Link to the simulation paper.

Improvement of the SZ component of the Planck Sky Model is required

Need for simulations of *COrE*+ missions (e.g. baseline and extended) + associated CMB-S4 maps (with realistic atmospheric noise included) Need to include other emissions than SZ for the clusters: dust.

3. The cluster catalogue

This section will contain thermal SZ and relativistic thermal SZ studies

Describe how the clusters are detected from the simulations \rightarrow use Planck algorithms.

Characterize the selection function of the catalogue.

4. Cosmological constraints from the *COrE*+ cluster catalogue

Fisher constraints assuming the selection function determined in Sect. 3.

5. Cluster Mass Estimation

Link to the lensing paper.

This section will contain cluster CMB lensing studies and comparison with Euclid shear studies

How well can we measure individual/stacked masses using CMB lensing with *COrE*+? see e.g. Melin & Bartlett (2015)

Compare Euclid shear measurements of COrE+ clusters with COrE+ CMB lensing measurements. Which one is better ? For which redshift range ?

6. Velocity fields

This section will contain kinetic SZ studies

At which scale can we reconstruct the velocity field with COrE+? Bulk flow studies. Radial: thanks to the kSZ (individual and stacking)

Transverse: thanks to the polarized SZ (stacking only but how to determine the direction of the velocities?). The transverse velocity determination with the polarized SZ seems hope-

Context and Major topics

- COrE and COrE & CMB-S4 cases
- More than just the gas (SZ) → dust and total mass
- Astrophysics

 z>1 & z>2 samples, space and space & ground?
 z>2 sample, gas and dust interplay in proto-clusters
- Cosmology cluster counts (sensitivity to uncertainties on Y-M normalization and evolution)
- Impact of telescope size (1.2 vs. 1.5 vs. 1.8m)
 [P. de Bernardis talk on Wednesday morning]

Additional topics

• Astrophysics

z>1 & z>2 samples, space and space & ground? z>2 sample, gas and dust interplay in proto-clusters **cluster masses (M**₅₀₀)

Cosmology

cluster counts (sensitivity to uncertainties on Y-M normalization and evolution) velocites (kSZ) T_{CMB}(z)

 Synergy with other experiments (eROSITA, Euclid, LSST, WFIRST, Athena) M. Remazeilles J. Delabrouille J.-B. Melin

PSM simulations

Baseline COrE "SZ" simulations 60-800 GHz 1.5m tel.

Maps

http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/SZ/core+_v4_SZ_sim_v2/

SZ inputs

http://www.jb.man.ac.uk/~cdickins/exchange/bpol_sims/Mathieu/SZ/core+_v4_SZ_sim/components/sz/

- Astrophysics Need additional PSM CMB-S4 maps
 z>1 & z>2 samples, space and space & ground?
 z>2 sample, gas and dust interplay in proto-clusters
 cluster masses (M₅₀₀)
- Cosmology
 - cluster counts (sensitivity to uncertainties on Y-M normalization and evolution) velocites (kSZ) $T_{CMB}(z)$
- Synergy with other experiments (eROSITA, Euclid, LSST, WFIRST, Athena)

- Astrophysics

 z>1 & z>2 samples, space and space & ground?
 z>2 sample, gas and dust interplay in proto-clusters cluster masses (M₅₀₀)
 - Cosmology

cluster counts (sensitivity to uncertainties on Y-M normalization and evolution) velocites (kSZ) $T_{CMB}(z)$

• Synergy with other experiments (eROSITA, Euclid, LSST, WFIRST, Athena)

Dust in clusters

(0.0, 90.0) Galactic

- Astrophysics z>1 & z>2 samples, space and space & ground? z>2 sample, gas and dust interplay in proto-clusters cluster masses (M₅₀₀)
 - Cosmology
 - cluster counts (sensitivity to uncertainties on Y-M normalization and evolution) velocites (kSZ) $T_{CMB}(z)$
 - Synergy with other experiments (eROSITA, Euclid, LSST, WFIRST, Athena)

Cluster masses (CMB halo lensing)

See J. Bartlett's talk

• Astrophysics

z>1 & z>2 samples, space and space & ground? z>2 sample, gas and dust interplay in proto-clusters cluster masses (M₅₀₀)

Cosmology

cluster counts (sensitivity to uncertainties on Y-M normalization and evolution)

velocites (kSZ) $T_{CMB}(z)$

• Synergy with other experiments (eROSITA, Euclid, LSST, WFIRST, Athena)

Cluster detection probability

- Astrophysics z>1 & z>2 samples, space and space & ground? z>2 sample, gas and dust interplay in proto-clusters cluster masses (M₅₀₀)
- Cosmology

cluster counts (sensitivity to uncertainties on Y-M normalization and evolution)

velocites (kSZ) C. Hernandez-Monteagudo?

T_{CMB}(z)

• Synergy with other experiments (eROSITA, Euclid, LSST, WFIRST, Athena)

- Astrophysics z>1 & z>2 samples, space and space & ground? z>2 sample, gas and dust interplay in proto-clusters cluster masses (M₅₀₀)
- Cosmology
 - cluster counts (sensitivity to uncertainties on Y-M normalization and evolution)
 - velocites (kSZ)

 $\frac{T_{CMB}(z)}{G_{L} uzzi}$ C. Martins R. G. Santos

Synergy with other experiments (eROSITA, Euclid,

LSST, WFIRST, Athena)

Conclusions

- Work on the cluster science paper recently restarted
- All-sky PSM simulations (with up-to-date SZ component) are now available for the baseline (1.5m) configuration. Soon for 1.2 and 1.8m configurations + CMB-S4
- Astrophysical and cosmological questions (sample characterization @ z>1 and z>2, cosmological constrains)
- Still a lot of work to do and science to explore. Volunteers welcome !