Large-Scale Structure Science

J.G. Bartlett

APC – Université Paris Diderot

Towards a next space probe for CMB observations and cosmic origins exploration 17-20 May 2016 CERN

Census of the Baryons

 How do baryons flow from gas to stars and back within the cosmic web?

Census of the baryons

- Where are they: relation to dark matter
- What are they doing: gas, dust, star formation, etc.
- Feedback is key, but not well understood
- Missing info on gas, dust, mass at critical epochs

LSS Science Case

- Sub/millimeter well suited to answer this question:
 - tSZ traces gas
 - CMB lensing traces mass
 - Far-IR traces dust and star formation rate
 - Millimeter traces AGN
- Halo properties (1-halo term)
 - Binning on objects by type and redshift
 - Halo masses via CMB lensing
- Larger-scale distribution (2-halo term, filaments)
 - Cross-correlations

Population Studies

Implications for feedback: gas pushed out to R_{500} < R<5 R_{500}

Population Studies: QSOs

Verdier et al. (2016): Planck

Tracer of SF

tSZ at z>3!

Constraints on QSO feedback

See also Crichton et al. (2016): ACT

CMB Halo Lensing

- CMB: Much broader lensing kernel
- Reach critical high-z epochs

CMB Halo Lensing

 Stack on selected objects

1-sigma filter noise (Melin & Bartlett 2015)

Cross Correlations

- SPT CMB lensing
- Dark Energy Survey SV galaxies
- Tomography
 - Galaxy bias
 - Structure growth rate (neutrino mass, dark energy, modified gravity)

Giannantonio et al. (2016)

Cross-Correlations

Unique Science

Probe critical epochs of galaxy formation: z~(1–8)

Unique Science

- Probe critical epochs of galaxy formation: z~(1–5)
- Trace hot gas phase over critical epochs
 - Feedback mechanism running thermal cycle
 - Recall: galaxy formation is inefficient: Why?
- Trace dust during critical epochs
 - Metal production
 - Star formation activity
- Trace dark matter
 - Host halos
 - Larger-scale distribution

Impact on Mission

- Frequency coverage for tSZ and Dust
 - Population studies: +resolution
 - Large-scale distribution: e.g., CIB/SZ separation
- Resolution for CMB halo lensing

CMB Halo Lensing

Frequency Coverage

- QSO study with: 70, 100, 143 & 217 GHz
- Loose dust information
- Bias SZ signal
- Need high frequencies

Work

- Sell science case
 - Outside our community
- CMB halo lensing
 - Minimum variance estimator
- Sensitivities for SZ, dust & mass stacks
- Cross-correlation predictions
- Studies for different mission profiles

Work

Astronomy & Astrophysics manuscript no. corelss May 19, 2016

©ESO 2016

COrE+: Large-Scale Structure Science

The *COrE*+ Collaboration
James G. Bartlett, Jean-Baptiste Melin et al.

Received; accepted

ABSTRACT

This is the abstract.

Key words. Large-Scale Structure

- 1. Introduction
- 2. Census of the Baryons
- 3. Halo Lensing
- 4. Cross-Correlations
- 5. Conclusion

Acknowledgements.. Here are the acknowledgements...