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transmission

Detector Band passes

Differences in filter shapes from detector to detector might be present

Example: Filters of Planck HFI
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the CO components has very
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Calibration mismatch

Foreground relative calibration:
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Effect captured by a single number per detector and per component.

Lead to intensity to polarization leakage of foreground components
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Maximum effect when a and b detectors, with polar oriented at 90 deg.,
have band mismatch. Difference cancels CMB intensity by not dust.



Relative calibration from dust

Relative calibration dust-CMB for
Planck

- Processing of Planck
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Accuracy of ground filter measurements with FTS required such that parameters can be
fixed and not re-estimated from flight data.



Planck-like errors

Filter simulations

We assume two kind of errors:

Typical measurement errors:
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Data simulations

Very simple TOI simulations in order to isolate the effect of intensity to polar leakage
- include only CMB and dust intensity

- no polarization

- NO noise

- same pixellisation between input and output maps

- band-pass integration at the TOI level

Simulations at 150 GHz using two configurations: Core+ and LiteBird

Map-making: solve for I, Q, U with simple linear projection
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We have checked that in absence of band mismatch we get 0 polarization



Result for Core+

mask Q map

mask U map
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Results for LiteBird
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We use LiteBird scanning strategy
with 50 detectors and 6 month

observations
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Results for LiteBird

After masking 20% of the sky




LiteBird scanning strategy angles
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Leakage power spectrum
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Leakage power spectrum

LiteBird scanning strategy angles
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Leakage power spectrum

COrE scanning strategy angles

107! .. Angular power spectrum 75% sky fraction
10 detectors -

(I +1)Cy/ (2m) [uK?]
=
o

10
— EE leakage
— BB leakage
— B len, r=0.01
— B unlen, r=0.01
10~ N N S L e e
10° 10! 10° 10° 10%



Preliminary conclusions

Band-pass mismatch should lead to non-negligible intensity to
polarization leakage if not corrected, specially at very low ells

Power spectrum « £

Features in the power spectrum might depend on the scanning
strategy

Work in progress for CORE+ scanning strategy

First order correction are possible using frequency channels where
galactic components dominate



Future work

- Leakage disappears if we perform single detector |, Q, U maps. Need to check what
is the prize to pay in term of signal to noise.

- First order correction can be performed easily using bolometer pair difference:
S la = ICMB + QCOS 2lﬁ + U sin 2lﬁ + (1’(,1(;31
S b = ICMB - QCOS 2!/1 — U sin 2lﬁ + a’bIGal

S la — S b = 2Q COS 2lﬁ + 2U sin 2(// + (a/a - a’b)IGa]

Basic idea: - use the 350 GHz channel providing a good proxy for I, .
- Then fit amplitude coefficients of dust template built from the 350
GHz channel at the TOI level
- subtract the template from each bolometer pair

Main limitations:
- Reduce data to bolometer pair.
- Assume a single component of dust
- Might be coupled with inter-calibration coefficients.

Global approach: global map-making solution: Solve jointly I, Q, U, Al



