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Searching for B modes : sensitivities vs. Expected
signal
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Detector noise PS from Planck

107

Noise power spectro (orbitrary units)

107

1 1
10° 10" 107 10° 10
Frequency (Hz)

Fig. 2. Noise cross-power spectra of the 143-GHz bolometers,
with the unpolarized spider-web bolometers (SWBs) in red and
the polarization-sensitive bolometers (PSBs) in blue. The low-
level correlated white noise component of the PSB noise is as-
sociated with common glitches below the detection threshold.
Auto-spectra are shown in black. The uncorrelated noise is in
green.
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Standard Ansatz for detector noise

We assume Gaussian stationary noise completely
characterized by a power spectrum

(n(v) n(v)) = N()s(v — '), (1)

and additionally the Ansatz

Vknee \ @
N(v) = Nunie (1 + (7222) "] )
Typically, 1 < o < 2 and vpee =~ 200 mHz for Planck but has
been observed as small as 10 mHz in the laboratory. However,
the Planck detectors tested in the lab showed comparable
performance, and it is not fully understood why the
performance in space was so much poorer.

Lesson : You should be worried.



The map making equation
(easy to write, harder to solve for big maps)

The underlying (approximate) statistical model
d=Am-+n (3)
d = (vector of data taken)
m = (true sky map)
A = (pointing matrix)
n = (noise vector)

N = (detector noise covariance matrix)

The maximum likelihood sky map is given by

my. = (ATN"'TA)""(ATN~")d (4)



The curse of low frequency excess noise
» 1/f* noise means that we cannot make absolute
measurements.

» The zero point is floating and provides no meaningful
information.

Mathematically, the integral

N(t) = 2 /0 " dv N(v) cos(2rmut) (5)

diverges for o > 0.

» Only differences of measurements taken between a short
time span t < vknee | contribute meaningful information.



The curse of 1/f noise is not new

» In 1947 Dicke proposed switching between different points
in the sky or between the sky and a cold source to
eliminate 1/f noise in the microwave amplifiers/detector
available at the time.

» COBE and WMAP had pairs of horns or telescope,
respectively, and only the differences were used, so that
the noise of the data stream was more or less "white".
Planck LFI did more or less the same but with an artificial
load. HEMTs must be switched at =~ (few) kHz is order to
control low frequency excess noise.

» Old map making is simple—essentially least
squares—whereas modern map making would not be
possible without fast computers. Implicit differencing in
software replaces differences implemented in hardware.



The map making filter N=1(t)

N (E) 2 / ~ dv N~1(v) cos(2mut)

0
2Nypite™! / dv ( Y ) cos(2mwt), (6)
0 V + Vknee

This is a high pass filter. The v = 0 is completely blocked. The
constant offset and linear drifts are removed from the data
stream because they carry no useful information.




Spin-precession family of scanning strategies

Solar Panels

L2

Telescope pointing

Spin Axis

Bearing

Precession

-Qprec

B
ﬁ'&\»ﬂ spin

Anti-solar

direction



Pattern on sky
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This pattern is centered on the ecliptic equator and precesses
around over the course of the year.



|sotropic scans

» We assume that every pixel is scanned in exactly the same
way in a manner isotropic under rotations about the pixel
center and that the polarizer orientations have an isotropic
distribution. (The latter assumption in fact can be relaxed.)

» Under these assumption, we can use functional analysis
(the study of operators on infinite dimensional function
spaces) rather than finite-dimensional linear algebra. The
isotropy allows us to solve for the final map covariance
matrix in terms of simple one-dimensional integrals.

» Does not apply exactly to most scan strategies, but many
more cases can be studied and invaluable intuition can be
gained.



Temperature case :
solving the map covariance matrix
for an isotropic scan

The operator
O =(ATN"'A)

is the map inverse noise matrix.
We may expand
R oo +£ N R
(ATn—1 A) Q) = Wnte) S wW S Yem(@) Y (@),
=0  m=—t

and solve for the eigenvalue as follows

n +o0
WZT = 1- Z f(i)/ at (2vknee) 9(2mvkneelt]) Pe (COS[B(f)(t)])
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Temperature case : boost factor

B = spin opening radius (in degrees)
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Comparing polarizations in presence of 1/f noise
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Polarization case : a bit messier but doable

The polarization measurements are modelled as follows :
T(t) = I(t) + cos 2£(t) Q(t) + sin2&(t) U(t), (10)

We obtain the eigenvalue/eigenfunction equation
+7 do +o0 - - -
> i / ?ﬁ / dT g(T) Re [eXp[—2’¢] Ej <9(i)(T7 ¢=0),6)(T, ¢ = 0))}
0} T -

e(T; +,¢6= 0)
= w/Re [ Ejz(N.P.)AeﬁN.p‘] . (11)



Final polarization result

+
Wy 1‘%: . dTg(T)/ o Q,2(1)
xRe[(cos[Z(qS(, + 6)] Qy2(cos 0(T)) + isin[2(6) + B)] Uja(cos (7))

x exp|—2i{$ + Ax(T)}] ]
+oo Qi 2(cos 0;(T)) + Uj2(cos 6;(T))
1—2 i / dT g(T) -2 20/_72(1’)

X exp [21{¢(f)(7) - AX(i)(T)}]

+oo Qi 2(cos 0;(T)) + U 2(cos 6;(T))
1—24,/ dT g(T) -2 20,,2(1])

X COS [2{¢(i)(T) - AX(")(T)}] ' 12




Polarization case : boost factor

These are results without a rotating half-wave plate.

10"

% 10

3

10"

(1=2)

L 1.3 ﬁ
20
// ‘.7
5.0 |
|30
107 200

10 20 30 40 50 60 70 80 90
A

10'

1 100

3

10"

(1=10)

KJN
“/K\&;

2.0

30— ——
/

1
5.0

100 20 30 40 50 60 70 80 90
A



Polarization case : boost factor

These are results with a rotating half-wave plate.
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Conclusions

> 1/f noise is a problem that can be important and could seriously
compromise ultimate instrument performance. It is hard to predict level
of 1/f noise in space.

» The map making equation (and this analysis) does not include a lot of
possible complexity. Actual performance could be much worse than
forecast. Actual performance cannot be better than forecast, contrary to
what some people believe. There are no magic software solutions to
gain information not present in the measurements themselves. The map
making equation gives the ideal sky map given the data taken (subject
to some assumptions).

» This work demonstrates that not everything is a Big
Data/Supercomputer problem to be tackled with comprehensive
"end-to-end" simulations. There is scope for simple models for
accounting for systematic errors studied in isolation. Simple models
provide intuition and allow many more cases to be analyzed.
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We present an exact expression for the 1/f contribution to the noise of the CMB temperature and polarization maps for a survey in which the scan
pattern is isotropic. The result for polarization applies likewise to surveys with and without a rotating half-wave plate. A representative range of
survey parameters is explored and implications for the design and optimization of future surveys are discussed. These results are most directly
applicable to space-based surveys, which afford considerable freedom in the choice of the scan pattern on the celestial sphere. We discuss the
applicability of the methods developed here to analyzing past experiments and present some conclusions pertinent to the design of future
experiments. The techniques developed here do not require that the excess low frequency noise have exactly the 1/f shape and readily generalize
10 other functional forms for the detector noise power spectrum. In the case of weakly anisoiropic scanning patterns the techniques in this paper can
be used to find a preconditioner for solving the map making equation efficiently using the conjugate gradient method.
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