

Beam Asymmetry Correction

A real space approach to estimating and correcting beam systematics

Ranajoy Banerji, Jacques Delabrouille May 19, 2016

APC, Paris

Table of contents

- 1. Simulating for Beams
- 2. Leakage due to asymmetric beams and correction

Simulating for Beams

Timestream Simulation

- An simulation package developed at APC for the purpose of studying systematics.
- Optimised for a COrE like scan strategy
- Uses optimised libraries and MPI parallelised and hence very fast
- Simulation capabilities
 - Realistic pointing for each data point
 - Polarisation angle on the local sky frame for each data point
 - Can add white noise
 - Convolve with a pixelised beam in real space
 - Capable of simulating pointing errors

Pixelised Beams

 8^\prime symmetric beam

8', 10% elliptic beam

Realistic 5.79' beam. Court. Mark Ashdown

Convolving with the pixelised beams

- To optimise the simulation, it is important that the beam map resolution match exactly the co-scan scan resolution
- The beam map is broken up into 1D rows and there is an independent timestream simulation for each row.
 So for a NxN beam map there will be N timestreams generated.
- Each such timestream is convolved in Fourier space by it's corresponding beam row.
- The convolved timestreams are then summed up to give the beam convolved timestream.
- This method scales as $\sim N$ for a NxN beam.
- Has the ability to convolve for any arbitrary beam shape.
- Belongs to the computationally intensive but more exact group of analysis techniques.

Beam Convolved timestrem signal

- With our pixel space convolution we get a superior simulated signal as compared to scanning from pre-smoothed maps.
- We have better control over pixelisation issues and pointing at different points within the same Healpix pixel.

Data Model and Map making

The data model for our scan is

$$y_t = A_{tp} s_p + n_t$$

ullet I implement a maximum likelihood map-maker that minimises the χ^2

$$\chi^{2} = (y - As)^{T} N^{-1} (y - As)$$
which gives
$$\bar{s} = [A^{T} N^{-1} A]^{-1} A^{T} N^{-1} y$$

 I implemented a PCG solver that solves for s from the system of linear equations

$$[A^T N^{-1} A]s = A^T N^{-1} y$$

Leakage estimation pipeline : Summary

Leakage due to asymmetric

beams and correction

Input and Scan Parameters used

- High Resolution T,Q,U CMB only input maps
- NSIDE = 4096 for 4' and 8' beams High resolution required for first test of method.

May be an overkill and possibility for reduction

- No Noise
- COrE like scanning
 - $\alpha = 45^{\circ}$
 - $\beta = 45^{\circ}$
 - For 8' and 4' beams
 - Spin period = 30s
 - Precession period = 190 hrs
 - Sampling rate = 750 Hz

Such values used just to have no unseen pixels in the scan area

- ullet Scanned for 1 precession period $\to \sim 50\%$ of the sky
- 4 bolos in an optimal configuration i.e. at 45⁰ to each other. This
 makes the 3x3 covariance matrix diagonal and helps in singling out
 the systematics I am studying.
- 5% asymmetric beam map size of 4 FWHM

Input and Scan Parameters used

- High Resolution T,Q,U CMB only input maps
- NSIDE = 2048 for 30' beam High resolution required for first test of method.

May be an overkill and possibility for reduction

- No Noise
- COrE like scanning
 - $\alpha = 45^{\circ}$
 - $\beta = 45^{\circ}$
 - For 30' beams
 - Spin period = 30s
 - Precession period = 110 hrs
 - Sampling rate = 400 Hz

Such values used just to have no unseen pixels in the scan area

- ullet Scanned for 1 precession period $\to \sim 50\%$ of the sky
- 4 bolos in an optimal configuration i.e. at 45⁰ to each other. This
 makes the 3x3 covariance matrix diagonal and helps in singling out
 the systematics I am studying.
- 5% asymmetric beam map size of 4 FWHM

8' fwhm beam, major-axis at 45° to polarisation direction

8' fwhm beam, major-axis at 45° to polarisation direction

8' fwhm beam, major-axis at 0^0 to polarisation direction

8' fwhm beam, major-axis at 0^0 to polarisation direction

8' fwhm beam, major-axis at random orientations

8' fwhm beam, major-axis at random orientations

4' fwhm beam, major-axis at 45° to polarisation direction

4' fwhm beam, major-axis at 45° to polarisation direction

30' fwhm beam, major-axis at 450 to polarisation direction

30' fwhm beam, major-axis at 450 to polarisation direction

Leakage comparison, major-axis at 45° to polarisation direction

Residue comparison, major-axis at 45° to polarisation direction

Outlook

- We see that the leakage due to beam asymmetries is significant, especially for the 30' beam, given our target of r = 0.001.
- With our map level correction we have a noticeable improvement on the leakage and is promising as these results are very recent and has scope for maturing.
- This opens up the possibility of measuring many more I modes of the lensing BB spectra and the ability for delensing.
- It also opens up the possibility to measure many more I modes for unlensed BB
- This is important for complementing similar work done on the harmonic and power spectrum space.

Future Work

- We are at an early stage of our analysis and hence large scope for improvement.
- Do analyses with
 - White Noise
 - 1/f Noise
 - Realistic T,Q,U beams
 - Include other systematics