Beam Asymmetry Correction

A real space approach to estimating and correcting beam systematics

Ranajoy Banerji, Jacques Delabrouille
May 19, 2016
APC, Paris
Table of contents

1. Simulating for Beams

2. Leakage due to asymmetric beams and correction
Simulating for Beams
Timestream Simulation

- An simulation package developed at APC for the purpose of studying systematics.
- Optimised for a COre like scan strategy
- Uses optimised libraries and MPI parallelised and hence very fast
- Simulation capabilities
 - Realistic pointing for each data point
 - Polarisation angle on the local sky frame for each data point
 - Can add white noise
 - Convolve with a pixelised beam in real space
 - Capable of simulating pointing errors
Pixelised Beams

8′ symmetric beam

Realistic 5.79′ beam. Court. Mark Ashdown

8′, 10% elliptic beam
Convolving with the pixelised beams

- To optimise the simulation, it is important that the beam map resolution match exactly the co-scan scan resolution.
- The beam map is broken up into 1D rows and there is an independent timestream simulation for each row. So for a $N \times N$ beam map there will be N timestreams generated.
- Each such timestream is convolved in Fourier space by its corresponding beam row.
- The convolved timestreams are then summed up to give the beam convolved timestream.
- This method scales as $\sim N$ for a $N \times N$ beam.
- Has the ability to convolve for any arbitrary beam shape.
- Belongs to the computationally intensive but more exact group of analysis techniques.
Beam Convolved timestream signal

- With our pixel space convolution we get a superior simulated signal as compared to scanning from pre-smoothed maps.
- We have better control over pixelisation issues and pointing at different points within the same Healpix pixel.
The data model for our scan is

\[y_t = A_{tp}s_p + n_t \]

I implement a maximum likelihood map-maker that minimises the \(\chi^2 \)

\[\chi^2 = (y - As)^T N^{-1}(y - As) \]

which gives

\[\bar{s} = [A^T N^{-1} A]^{-1} A^T N^{-1} y \]

I implemented a PCG solver that solves for \(s \) from the system of linear equations

\[[A^T N^{-1} A]s = A^T N^{-1} y \]
Leakage estimation pipeline: Summary

Input map → Convolved map → Deconvolve for circular beam in harmonic space → Estimated leakage map → Deconvolved map
Leakage due to asymmetric beams and correction
Input and Scan Parameters used

- High Resolution T,Q,U CMB only input maps
- $\text{NSIDE} = 4096$ for 4’ and 8’ beams High resolution required for first test of method.
 May be an overkill and possibility for reduction
- No Noise
- COrE like scanning
 - $\alpha = 45^0$
 - $\beta = 45^0$
 - For 8’ and 4’ beams
 - Spin period = 30s
 - Precession period = 190 hrs
 - Sampling rate = 750 Hz
 Such values used just to have no unseen pixels in the scan area
 - Scanned for 1 precession period $\rightarrow \sim 50\%$ of the sky
- 4 bolos in an optimal configuration i.e. at 45^0 to each other. This makes the 3×3 covariance matrix diagonal and helps in singling out the systematics I am studying.
- 5% asymmetric beam map size of 4 FWHM
Input and Scan Parameters used

- High Resolution T,Q,U CMB only input maps
- NSIDE = 2048 for 30’ beam High resolution required for first test of method.
 May be an overkill and possibility for reduction
- No Noise
- COrE like scanning
 - $\alpha = 45^0$
 - $\beta = 45^0$
 - For 30’ beams
 - Spin period = 30s
 - Precession period = 110 hrs
 - Sampling rate = 400 Hz
 Such values used just to have no unseen pixels in the scan area
 - Scanned for 1 precession period $\rightarrow \sim 50\%$ of the sky
- 4 bolos in an optimal configuration i.e. at 45^0 to each other. This makes the 3x3 covariance matrix diagonal and helps in singling out the systematics I am studying.
- 5% asymmetric beam map size of 4 FWHM
$8'$ fwhm beam, major-axis at 45^0 to polarisation direction
8' fwhm beam, major-axis at 45^0 to polarisation direction
8' fwhm beam, major-axis at 0° to polarisation direction

\[\frac{l(l+1)C_l}{2\pi} [\mu K^2] \]

- EE
- BB

\[r = 0.01 \]
\[r = 0.001 \]

\(Q \)

\(U \)
$8'$ fwhm beam, major-axis at 0^0 to polarisation direction
8’ fwhm beam, major-axis at random orientations
8' fwhm beam, major-axis at random orientations
4′ fwhm beam, major-axis at 45° to polarisation direction

\[I(\lim, 0) / 2 \pi [\mu K^2] \]

Graph showing power spectra for different scenarios with labels EE and BB, and different values for r (0.01, 0.001).

Images showing polarisation maps with color scales indicating leakage in Q and U.
4′ fwhm beam, major-axis at 45° to polarisation direction
30' fwhm beam, major-axis at 45° to polarisation direction

Q

Leakage

1.3 gsp, 200,000 px

-2

-1.5

0

1.5

U

Leakage

1.3 gsp, 200,000 px

-2.24

2.07
30' fwhm beam, major-axis at 45° to polarisation direction
Leakage comparison, major-axis at 45^0 to polarisation direction
Residue comparison, major-axis at 45^0 to polarisation direction
• We see that the leakage due to beam asymmetries is significant, especially for the 30’ beam, given our target of $r = 0.001$.

• With our map level correction we have a noticeable improvement on the leakage and is promising as these results are very recent and has scope for maturing.

• This opens up the possibility of measuring many more l modes of the lensing BB spectra and the ability for delensing.

• It also opens up the possibility to measure many more l modes for unlensed BB.

• This is important for complementing similar work done on the harmonic and power spectrum space.
Future Work

- We are at an early stage of our analysis and hence large scope for improvement.
- Do analyses with
 - White Noise
 - 1/f Noise
 - Realistic T,Q,U beams
 - Include other systematics