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Simulating for Beams



Timestream Simulation

An simulation package developed at APC for the purpose of

studying systematics.

Optimised for a COrE like scan strategy

Uses optimised libraries and MPI parallelised and hence very fast
e Simulation capabilities

e Realistic pointing for each data point
e Polarisation angle on the local sky frame for each data point
Can add white noise

Convolve with a pixelised beam in real space

Capable of simulating pointing errors



Pixelised Beams

8’ symmetric beam
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Convolving with the pixelised beams

e To optimise the simulation, it is important that the beam map
resolution match exactly the co-scan scan resolution

e The beam map is broken up into 1D rows and there is an
independent timestream simulation for each row.
So for a NxN beam map there will be N timestreams generated.

e Each such timestream is convolved in Fourier space by it's
corresponding beam row.

e The convolved timestreams are then summed up to give the beam
convolved timestream.

e This method scales as ~ N for a NxN beam.
e Has the ability to convolve for any arbitrary beam shape.

e Belongs to the computationally intensive but more exact group of
analysis techniques.



onvolved timestrem

e With our pixel space convolution we get a superior simulated signal
as compared to scanning from pre-smoothed maps.

e We have better control over pixelisation issues and pointing at
different points within the same Healpix pixel.

Timestream signal comparison

— Unsmoothed sky
— Pre-smoothed sky
— Real space smoothing

nk




Data Model and Map making

e The data model for our scan is
Ye = AwpSp + ¢
e | implement a maximum likelihood map-maker that minimises the 2
X2 =(y —As) TN~y — As)
which gives
s=[ATN 1A TATN Ly
e | implemented a PCG solver that solves for s from the system of

linear equations

[ATN-1A]ls = ATN 1y



mation pipeline : Summary

Input map

Estimated leakage map

Convolved map
Deconvolve for circular Deconvolved map

beam in harmonic space
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Leakage due to asymmetric
beams and correction



Input and Scan Parameters used

e High Resolution T,Q,U CMB only input maps
e NSIDE = 4096 for 4" and 8" beams High resolution required for first
test of method.
May be an overkill and possibility for reduction
e No Noise
e COrE like scanning
o a=45°
o 3 =45
e For 8" and 4’ beams
e Spin period = 30s
e Precession period = 190 hrs
e Sampling rate = 750 Hz
Such values used just to have no unseen pixels in the scan area
e Scanned for 1 precession period —~ 50% of the sky
e 4 bolos in an optimal configuration i.e. at 45° to each other. This
makes the 3x3 covariance matrix diagonal and helps in singling out
the systematics | am studying.
e 5% asymmetric beam map size of 4 FWHM 8



Input and Scan Parameters used

e High Resolution T,Q,U CMB only input maps
e NSIDE = 2048 for 30" beam High resolution required for first test of
method.
May be an overkill and possibility for reduction
e No Noise
e COrE like scanning
o a=45°
o 3 =145
e For 30" beams
e Spin period = 30s
e Precession period = 110 hrs
e Sampling rate = 400 Hz
Such values used just to have no unseen pixels in the scan area
e Scanned for 1 precession period —~ 50% of the sky
e 4 bolos in an optimal configuration i.e. at 45° to each other. This
makes the 3x3 covariance matrix diagonal and helps in singling out
the systematics | am studying.
e 5% asymmetric beam map size of 4 FWHM 9



8’ fwhm beam, major-axis at 45° to polarisation direction
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8’ fwhm beam, major-axis at 45° to polarisation direction
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8’ fwhm beam, major-axis at 0° to polarisation direction
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8’ fwhm beam, major-axis at 0° to polarisation direction
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8’ fwhm beam, major-axis at random
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8’ fwhm beam, major-axis at random orientations
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4’ fwhm beam, major-axis at 45° to polarisation direction
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4’ fwhm beam, major-axis at 45° to polarisation direction
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30" fwhm beam, m

r-axis at 45° to polarisation direction

[ EE

U1+1)Cy /2 [uK? |
—
(=]
i
o
8

107t
10°
10—9 L
10710 L

: Leakage ||
: Leakage |4
: Residue

: Residue ||

10711 n
10° 10!

Q
- v‘m‘klg -
\\ i

18



30’ fwhm beam, major-axis at 45° to polarisation directi
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Leakage comparison, m xis at 45° to polarisation direction
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Residue comparison, m axis at 45° to polarisation direction
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e We see that the leakage due to beam asymmetries is significant,
especially for the 30’ beam, given our target of r = 0.001.

e With our map level correction we have a noticeable improvement on
the leakage and is promising as these results are very recent and has
scope for maturing.

e This opens up the possibility of measuring many more / modes of
the lensing BB spectra and the ability for delensing.

e It also opens up the possibility to measure many more / modes for
unlensed BB

e This is important for complementing similar work done on the
harmonic and power spectrum space.
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e We are at an early stage of our analysis and hence large scope for
improvement.
e Do analyses with
o White Noise
1/f Noise
e Realistic T,Q,U beams
Include other systematics

23
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