CORE+ Telescope

Karl Young, Shaul Hanany, Neil Trappe, Darragh McCarthy

Comments on

- Where we are
- Baffles + Stop
- Focal Surface Shape
 - ARC

Telescope configuration trade-off

Telescope baseline

- Aperture = 1.2 m $F/D \sim 2$.
- Primary Mirror 1.5X1.2 m
- Secondary reflector diameter = 1 m
- Monolithic SiC technology unlike Planck

Slide 15

Focal plane layout

Figure 3: Sketch of the focal plane of COrE+ Light. Contours are Strehl= 0.8 for 60, 90, 130, 160, 220, 340, 450, and 600 GHz.

1.5 m Aperture Gregorian, Optimized Dragone, with Aspherics

Cold Stop Enforced (for most of the rays)

Change in pupil footprint area due to vignetting

Field Angle (degrees)	Area relative to unvignetted 1.5m pupil
0	1.00
+3 (-3) elevation	1.03; (0.89)
5.5 (-5.5) elevation	1.01; (0.79)
+3.5 in azimuth	0.98
+5.5 in azimuth	0.88

Change in Strehl with Cold Stop; 60 GHz

El. Field angle (degrees)	No stop	Stop 90 cm from focal plane
0	0.99	0.99
5.5	0.81	0.84
-5.5	0.84	0.85
Az. Field angle (degrees)		
5.5	0.79	0.825

Strehl is the ratio of peak energy to peak energy of diffraction limited system system. It is a single point measure. It gives no information about beam shape.

PSFs

Color scale dB at focal plane, normalized to 0.

0 dB

--13.6

--31.8

-23 dB

-41 dB

Didn't yet check

Polarization – should use GRASP

Higher Frequencies

Conic, Non-telecentric, Focal Surface: What if we tilt the arrays?

Chief rays for 7 field angles.

Results

Field (degrees)	Freq. (GHz)	AOI (deg)		us (cm) 3''	Strehl at focus	4'' outer		ehl 3" outer	3" inner	average delta strehl/cm
-5		(0,	3.150		0.89					0.03
-3	150	25.9	2.419	1.803	0.93	0.57	0.60	0.70	0.740	0.13
-2	300	23.3	2.031	1.514	0.90	0.22	0.40	0.35	0.62	0.28
0	600	17.9	1.214	0.904	0.90	0.28	0.23	0.45	0.38	0.53
2	300	8.6	0.216	0.161	0.71	0.70	0.71	0.70	0.71	0.025
3	150	11.5	0.231	0.172	0.81	0.80	0.81	0.81	0.81	0.01
5	60	17.39	1.136	0.846	0.86	0.88	0.83	0.87	0.84	0.02

Need to steer the beams

Or – Use a Lens?

an 1.5meter f/2

Scale:

0.05

15-May-16

Broadband ARC – Laser Ablation

Summary

So far: 1.5 m; Should we look at 1.2 m?

Low T baffles/stop

Baffles: OK

Stop: questionable

Do more detailed GRASP for polarization and far sidelobes

- Focal Plane:
 - Steer the beam
 - Use lens?

Backup Slides

To Do

F-number across focal plane

For comparison EBEX2013 had f/# from 1.86 – 2.04

PSFs, at 150 GHz, 3 degrees elevation

PSFs, at 150 GHz, -4 degrees elevation

PSFs, at 150 GHz, 3 degrees azimuth

PSFs, at 60 GHz, 5.5 degrees elevation Polarized input, primary is stop.

PSFs at 150 GHz, 0 degrees

Strehl = .99 for both

Color scale dB at focal plane, normalized to 0.