CORE+ Telescope

Karl Young, Shaul Hanany, Neil
Trappe, Darragh McCarthy

Comments on

- Where we are
- Baffles + Stop
- Focal Surface Shape
- ARC

Telescope configuration trade-off

Four configurations considered:

- Gregorian option 1

Selected option:
Fits in V-Grooves and can easily be mounted

- Gregorian option 2

Does not fit in V-Grooves

- Open Dragone \qquad
- Cross-Dragone with F~2

Complex Thermo-Mechanical accommodation

Large secondary mirror

Telescope baseline

Cesa

Gregorian configuration:

$$
\text { Aperture }=1.2 \mathrm{~m}-\mathrm{F} / \mathrm{D} \sim 2
$$

- Primary Mirror 1.5X1.2 m
- Secondary reflector diameter $=1 \mathrm{~m}$
- Monolithic SiC technology unlike Planck

Focal plane layout

Figure 3: Sketch of the focal plane of COrE+ Light. Contours are Strehl $=0.8$ for 60, 90, 130, $160,220,340,450$, and 600 GHz .

1.5 m Aperture Gregorian, Optimized Dragone, with Aspherics

- Baffles are necessary
- Note compactness of system
- Need GRASP including baffles

The primary mirror is the aperture stop

Fields at:
$-5.5 \mathrm{deg}$
$-3.5 \mathrm{deg}$
$-2.0 \mathrm{deg}$
0 deg
2.0 deg
3.5 deg
5.5 deg

Cold Stop Enforced (for most of the rays)

Vignetting: Some rays are limited by the stop, some by the primary.

50.00 CM

Change in pupil footprint area due to vignetting

Field Angle (degrees)	Area relative to unvignetted 1.5m pupil
0	1.00
$+3(-3)$ elevation	$1.03 ;(0.89)$
$5.5(-5.5)$ elevation	$1.01 ;(0.79)$
+3.5 in azimuth	0.98
+5.5 in azimuth	0.88

Change in Strehl with Cold Stop; 60 GHz

El. Field angle (degrees)	No stop	Stop 90 cm from focal plane
0	0.99	0.99
5.5	0.81	0.84
-5.5	0.84	0.85
Az. Field angle (degrees)		
5.5	0.79	0.825

Strehl is the ratio of peak energy to peak energy of diffraction limited system system. It is a single point measure. It gives no information about beam shape.

PSFs

Color scale dB at focal plane, normalized to 0 .

PSFs

$60 \mathrm{GHz}, 5.5 \mathrm{deg}$ azimuth

PSFs

150 GHz, Center

150 GHz, 3 deg elevation

Color scale dB at focal plane, normalized to 0.

Didn't yet check

- Polarization - should use GRASP
- Higher Frequencies

Conic, Non-telecentric, Focal Surface:
 What if we tilt the arrays?

Chief rays for 7 field angles.

Results

$\begin{gathered} \text { Field } \\ \text { (degrees) } \end{gathered}$	Freq.(GHz)	$\begin{aligned} & \mathrm{AOI} \\ & \text { (deg) } \end{aligned}$	Defocus (cm)		Strehl at focus	Strehl				$\begin{gathered} \text { average } \\ \text { delta } \\ \text { strehl/cm } \end{gathered}$
			$4^{\prime \prime}$	$3^{\prime \prime}$		$\begin{aligned} & 4^{\prime \prime} \\ & \text { outer } \end{aligned}$	$4^{\prime \prime}$ inner ${ }^{\prime \prime}$	$3^{\prime \prime}$ outer 3	$3^{\prime \prime}$ inner	
-5	60	30.9	3.150	2.347	0.89	0.81	0.72	0.85	0.78	0.03
-3	150	25.9	2.419	1.803	0.93	0.57	0.60	0.70	0.74	0.13
-2	300	23.3	2.031	1.514	0.90	0.22	0.40	0.35	0.62	0.28
0	600	17.9	1.214	0.904	0.90	0.28	0.23	0.45	0.38	0.53
2	300	8.6	0.216	0.161	0.71	0.70	0.71	0.70	0.71	0.025
3	150	11.5	0.231	0.172	0.81	0.80	0.81	0.81	0.81	0.01
5	60	17.39	1.136	0.846	0.86	0.88	0.83	- 0.87	0.84	0.02

Need to steer the beams

Or - Use a Lens?

Alumina lens $\sim 60 \mathrm{~cm}$ diameter

$\mathrm{n}=3.1$
Flat focal plane
Fields shown = +-5 deg Telecentric within 10 deg
F\#= ~ 1.8
Strehl ratios similar to F\#=2 (requires more detailed study)
~60 cm diameter
46.30 CM

Broadband ARC - Laser Ablation

Summary

- So far: 1.5 m ; Should we look at 1.2 m ?
- Low T baffles/stop
- Baffles: OK
- Stop: questionable
- Do more detailed GRASP for polarization and far sidelobes
- Focal Plane:
- Steer the beam
- Use lens?

Backup Slides

To Do

F-number across focal plane

For comparison EBEX2013 had f/\#
from 1.86-2.04

PSFs, at $150 \mathrm{GHz}, 3$ degrees elevation

Strehl $=0.81$

Strehl $=0.83$

PSFs, at 150 GHz , -4 degrees elevation

Strehl $=0.80$

Strehl $=0.81$

PSFs, at 150 GHz, 3 degrees azimuth

Strehl $=0.92$
Strehl $=0.91$

PSFs, at $60 \mathrm{GHz}, 5.5$ degrees elevation Polarized input, primary is stop.

Strehl $=0.813$

Horizontal polarization

Strehl $=0.812$

PSFs at $150 \mathrm{GHz}, 0$ degrees

Strehl = . 99 for both

Color scale dB at focal plane, normalized to 0 .

