

Update on Kinetic Inductance Detectors activities in France

Martino Calvo Institut Néel, CNRS Grenoble

Outline

1 – NIKA2 status update

2 – After NIKA2: B-SIDE

3 – New materials for lower frequencies

4 – Cosmic rays interactions on KID arrays

NIKA2 overview

NIKA2: a dual-band photometer for IRAM 30m

• Correct FOV: 6.5 arcmin

• Total pixel count: ≈ 3000

• Arrays count: 3 (2mm + 2 x 1.25mm)

Wavelength (central) [mm]	2.0	1.2
Frequency (central) [GHz]	150	250
NEFD [mJy·s ^{1/2} /beam] goal on 90% of the pixels	10	15
NEFD [mJy·s ^{1/2} /beam] specification on 50% of the pixels	20	30
FWHM [arcsec] goal	16	10
FWHM [arcsec] specification	18	12
FOV diameter [arcmin] goal	6.5	
FOV diameter [arcmin] specification	5	
Pixel size in beam sampling unit [Fλ] goal	0.6	
Pixel size in beam sampling unit [F λ] specification	0.9	

NIKA2 installation

09/2012 Project financed, kick-off

Mid-2015 Expected installation at IRAM

Fall 2015 Installation at IRAM (in just 3 days!!)

NIKA2 installation

The cryostat:

- 1.3 ton
- 2.3m length
- Full remote operation
- Cryogen free
- Base T ≈ 150mK

NIKA2 installation

The cryostat:

- 1.3 ton
- 2.3m length
- Full remote operation
- Cryogen free
- Base T ≈ 150mK

Test facilities

- Sky simulator
 - beam maps/responsivity

Martin-Pupplet interferometer

absorption spectra

Test facilities

Helps a lot in building confidence!

Noise level: 1÷2 Hz/Hz^{0.5} @ 10Hz

Responsivity: 0.8 kHz/K

NET $\approx 1 \div 2$ mK/Hz^{0.5} per pixel

 $NEP \approx 5 \cdot 10^{-17} W/Hz^{0.5}$

Near (at?) the photon noise limit!

NIKA2: the arrays

1000 pixels 2mm array

O. Bourrion et al., 2012 JINST 7 P07014

1.25mm: 1200÷2000 pixels → 8 feedlines
 Single 4" wafer fabrication

NIKELv1 boards: MUX factor 400 over 500MHz band

Current MUX factor: (250) (for safety + Q_i on ground!)

NIKA2: the arrays

Hilbert LEKID design, 2-pol M. Roesch et al., Proc ISSTT 2011

O. Bourrion et al., 2012 JINST 7 P07014

2mm: 600÷1000 pixels → 4 feedlines

1.25mm: 1200÷2000 pixels → 8 feedlines
 Single 4" wafer fabrication

NIKELv1 boards: MUX factor 400 over 500MHz band

Current MUX factor: (250) (for safety + Q_i on ground!)

NIKA2: arrays yield

• Yield > 80%!

Preliminary NEFD:

- 15 ± 5 mJy.sqrt(s) @ 2mm
- 30 ± 5 mJy.sqrt(s) @ 1.2mm

NIKA2: preliminary picture gallery!

Credit: NIKA2 collaboration

Integration time: 12 min

Credit: N. Ponthieu and NIKA2 collaboration

B-SIDE: a balloon-borne experiments for the study of polarized foregrounds

- Funding: on the way! (hopefully..)
- Launch planned for 2018/2019

	Specifications	Goals	
Primary mirror diameter (m)	0.8		
Instantaneous field-of-view (deg)	2	3	
Angular resolution (arc-min)	7	5	
Number of bands	1	2	
Flight Duration (days)	1	3	
Operating frequencies (GHz)	450-630	400-600 & 500-700	
Number of pixels	980	1800	
NEP (W/Hz ^{0.5})	5·10 ⁻¹⁶	2·10 ⁻¹⁶	
Background per pixel	50-100	50-100 pW	

Work has already begun!

B-SIDE: a balloon-borne experiments for the study of polarized foregrounds

Design

B-SIDE: a balloon-borne experiments for the study of polarized foregrounds

B-SIDE: a balloon-borne experiments for the study of polarized foregrounds

Design

'High' background application (~50 to 100 pW/pixel)

Aim mostly at rapid sky coverage

• Frequency range: 450 to 700GHZ

'High' background application (~50 to 100 pW/pixel)

Aim mostly at rapid sky coverage

• Frequency range: 450 to 700GHZ

'High' background application (~50 to 100 pW/pixel)

Aim mostly at rapid sky coverage

Frequency range: 450 to 700GHZ

'High' background application (~50 to 100 pW/pixel)

Aim mostly at rapid sky coverage

• Frequency range: 450 to 700GHZ

Lower frequencies: TiAl

- Thin Aluminum ok only above ≈100GHz!
- Plenty of other materials available, but beware of their properties!
- Example: Ti_xN_{1-x} , Nb_xSi_{1-x} ...
- Ti_xN_{1-x}: NEP worse under lower background!
- Ti/TiN?

Lower frequencies: TiAl

- Bi-layers have been widely used (for example for TES!)
- Proximity effect gived T_c intermediate between 2 materials
- Example : Ti/Al!
- Different tests made, best results for Ti_{10nm}/Al_{25nm}

Lower frequencies: TiAl

	3mm array	2mm array
Valid Pixels [#]	132	132
Pixel size [mm]	2.3	2.3
Film	Titanium-Aluminium bi-layer	Aluminium
Film Thickness [nm]	10-25	18
Silicon Wafer Thickness [µm]	525	300
Transition Critical Temp [K]	0.9	1.3
Frequency Cut-off [GHz]	65	110
Polarised Sensitive Detectors	non	non
Optical Background [pW]	0.3	0.5
Angular Size [Fλ]	0.75	0.75
Overall Optical Efficiency [%]	30	30

Catalano et al, JLTP 2016

CR impacts on KID arrays

 Space-based missions are exposed to an intense flux of high-energy particles, known as <u>Cosmic Rays</u>(CR)

CR can reach focal plane giving an unwanted glitch masking the scientific signal

Planck: order of 15% of data loss!

CR impacts on KID arrays

- KID are pair-breaking detectors
- This makes them less affected by CR hits
- (...and the bath T is less critical)

• But we have to verify (and quantify) this!

The high-range instrument.. (for a satellite!)

CR impacts on KID arrays

- KID are pair-breaking detectors
- This makes them less affected by CR hits
- (...and the bath T is less critical)

But we have to verify (and quantify) this!

The quick and dirty solution (and yet very effective!)

- First tests already done
- Particle energy adjusted to mimic CR in space
- Results in good agreement with expectations ($\tau \approx 100$ us)

CR impacts: phonon absorbing layers

- Already like this, data loss estimated is at less than 10%
- And we can do much better...

CR impacts: phonon absorbing layers

- Already like this, data loss estimated is at less than 10%
- And we can do much better...

- We can give a deeper look at what's going on
- Fast electronics, small pixels count
- Use in this case 'full power' alphas

- We can give a deeper look at what's going on
- Fast electronics, small pixels count
- Use in this case 'full power' alphas

Without Ti(/AI) layer

- We can give a deeper look at what's going on
- Fast electronics, small pixels count
- Use in this case 'full power' alphas

- We can give a deeper look at what's going on
- Fast electronics, small pixels count
- Use in this case 'full power' alphas

- Note: preliminary results... (SPIE for more!)
- But very promising!

Thank you!