

Detector coupling with mesh-lenses

Giampaolo Pisano

on behalf of

Maynooth, Manchester, Cardiff, Rome, Paris APC & Chalmers

ESA project: "Next Generation Sub-Millimetre Wave Focal Plane Array Coupling Concepts"

CMB workshop, CERN, May 17-20, 2016

Summary

Mesh Filters Technology

Mesh Lenses

Mesh Lens Arrays

Mesh Technology: Modelling

FSSs subgroup

Markuvitz (1951) Ulrich (1967)

Mesh Technology: Manufacture

Free standing (air-gap) multiple-mesh devices

Dielectrically embedded multi-mesh devices

$$C_1 = C_2 = C_3 = C_2 = C_1$$

- Hot pressed high frequency rejection continues through diffraction region

Summary

Mesh Filters Technology

Mesh Lenses

Mesh Lens Arrays

Flat Mesh Lens: Inhomogeneous Phase Delays

G. Pisano et al. Applied Optics **52**,n.11, (2013)

Locally variable grid geometries

Multiple transmission lines

W-Band f/3 lens prototype (1.4mm thick)

- Very thin and robust
- Very light and low loss
- No Anti Reflection Coatings required

Flat Mesh Lens: Transmission line design

G. Pisano et al. Applied Optics **52**,n.11, (2013)

0.0

- Lens consisting of ~ 8000 TLs
- Solution of just 1/8 of the surface
- Optimisation for max transmission & appropriate differential phase shift

Flat lens made with 10 grids (5+5)

TL#

Flat Mesh Lens: Finite-element modelling

G. Pisano et al. Applied Optics **52**,n.11, (2013)

2D model (cylindrical)

→ Experimental agreement down to the 4th side lobes

Summary

Mesh Filters Technology

Mesh Lenses

Mesh Lens Arrays

Mesh Lens Array: Concept

ESA project collaboration:

"Next Generation Sub-Millimetre Wave Focal Plane Array Coupling Concepts"

Maynooth (PI), Manchester, Cardiff, Rome, Paris APC & Chalmers

Mesh Lens Array: Coupling to a Sinuous Antenna

Aperture stop

FEA simulation

Mesh Lens Array: Coupling to a Sinuous Antenna

Mesh Lens

FEA simulation

Mesh Lens Array: Coupling to a Waveguide Probe Antenna

Mesh Lens Array: Waveguide Probe Antenna - Simulations

Mesh Lens Array: Waveguide Probe Antenna - VNA tests setup

Mesh Lens Array: Waveguide Probe Antenna - Preliminary results

	Measurement	Simulation
FWHM	23.6 deg	22.3 deg
Sidelobes	-18 dB	-21 dB
First minimum	30 deg.	27 deg.

Conclusions

- Mesh lenses advantages:
 - Phase front can be manipulated with hundreds of delay lines
 - Beam steering for non-normal incidence
 - Arbitrary beam corrections/optimisations
 - No complex ARC required
 - ARC for larger bandwidths are just flat additional layers
 - Independent from source (only original beam phase front required)
 - Large arrays produced with the same # of processes for a mesh filter
 - Arrays can be cut to arbitrary shapes
 - Mesh filters and polarisers can be added within the same structures