

COrE/M5 proposal: e2e calibration plan

Marco Bersanelli

University of Milano, Italy

COrE Instrument Baseline

Frequency range: 60 - 600 GHz, several bands

Adequate TRL
Simplicity, low cost
European technology
(depending on International collaboration)

Telescope: Gregorian 1.2m - 1.5m

Arranged in hexagonal modules following focal surface

Each module with a single band-selection filter and polarized

Backley laws in terms to be a few sizes of the second surface.

Baffle: long, internally black, 1K shield, surrounding FPA.

FPA: 55 cm diameter array, 1000's pixels, TES / KIDs

Baseline: Planar technology (no horns)

Depending on beam quality and background level: add planar lenses arrays

Detectors: single-frequency pixels, unpolarized

Options: Dichroic, polarizer plate

Calibration

Large heritage from Planck

Challenge: ~100 times more channels, ~30 times deeper

In spite of the major calibration effort (ground + flight), some effects were not anticipated (cosmic ray hits for instance) and some other parameters could have benefited from a better characterization.

However the difficulty will be to adapt this calibration from 10s of pixels for Planck to 1000s of pixels for COrE+. It would be costly and time demanding to characterize all the pixels individually with extremely high accuracy.

The strategy:

- High requirement/control of performance homogeneity at the component level
- General tests on all components to check for anomalies, failures
- Thorough testing on a representative subset of channels across frequency bands.

The Planck data analysis has also shown the criticality of a detailed knowledge of beams and far sidelobes, particularly for polarization.

Clearly, even the extensive optical testing carried out for Planck [111][114] would be far insufficient for COrE+ which requires RF calibration an order-of-magnitude deeper. The COrE+ optical ground testing will include a highly representative focal plane system, closer to the real, and multiple in-band pattern measurements.

Planck Instrument Calibration Plan

Model Philosophy

- Structural Model
- Cryogenic Qualification Model (CQM)
- for the PLM coolers and "PLM warm units", to be used for the cryogenic P/L QM, with a full structure (as for Planck), SVM dummy with fittings test qualifying the chain of cryo stages
- SVM Avionics Model (AVM)
- Protoflight Model (PFM)
- New, no refurbishment from other models
- RFQM (refurbished CQM), tbd. depending on achievement of optical verification
- Mirror models:
- QM, SM and FM: QM for the CQM and then the RFQM
- Flight spares

Integration and verification approach

- Based on Planck approach
- Cryogenic tests in CSL
- Optical test in CSL
- As telescope configuration is different, the feasibility (required space) is still to be determined
- Videogrammetry test with PFM PLM and QM mirrors (tbc)
- Spin test in LSS
- PFM TB/TB

Introduction

COrE Calibration

Classes of instrument parameters

- 1. Photometric calibration: Conversion of telemetry units to physical units (KCMB). Gain factors fwill be measured on the ground at several stages. The final calibration will be performed in-flight.
- 2. **Relative calibration**: stability of the gain, 1/f noise, noise spectra, zero-level stability. The redundancy of the scanning strategy will help on this.
- 3. **Thermal effects:** systematics induced by thermal fluctuations in the 0.1 K, 1.7 K, 4 K, 20 K, and 300 K stages; cooler induced microphonics. Thermal susceptibility of detector response. Verify that temperature sensors H/K provide sufficient monitoring of instrument thermal configuration and stability.
- 4. **Detector chain non-idealities:** detector (TES ot KIDs) characterization, detector time-response; non-linearity of the detector response; nonlinearity of ADC converters; impact of cosmic rays; sensitivity to microphonics, temperature susceptibility, cross-talk.
- 5. **Spectral calibration:** filter characterization (module level), detailed bandpass measurements. These measurements will be done on the ground, as no sweeping sources is planned on the satellite. In-flight verification of the measured bandpasses will be possible through observation of diffuse and point sources with steep spectra.
- 6. **Optical calibration**: main beam determination, near side-lobes, far side-lobes (both total intensity and polarization). Direct measurements of the main beams and near lobes in-flight from planets and strong polarization sources. Cross-polarization, reflection. Alignmant. Pointing.
- 7. **Polarization-specific calibration**: polarization efficiency and polarization angle of each detector; These will be measured both on-ground and in-flight.
- 8. Noise characterization: detailed measurements of the noise properties (noise power spectrum, 1/f noise, possible non-gaussianity) and their time evolution.

Overall calibration matrix

	CHANNEL	MODULE		RFQM	СОМ	CSL	IN-	
OPTICAL CALIBRATION	/UNIT		INSTR.	Model			FLIGHT	Compare to
	V	V						Optical Model
Beam pattern at FPA level (feed, planar?)	X	X						
Cross-polarisation	X	X					Χ	
Front-end Insertion Loss and Return Loss	X	Χ						
Main Beams (full optics)				X (subset)			Χ	Optical Model
Side Lobes (full optics)				X (subset)			X	(Moon flyby?)
DETECTION CHAIN								Compare to Instr. Model
NEP	X	Χ	X			X	Χ	
Time constants	X	Χ	X			Χ	Χ	
Noise spectrum measurement	Χ	X	X			X	Χ	
Detector linearity	Χ		Χ			Χ	X	
Readout electronics	X		Х					
RF Spectral Response		Χ	X					
ADC linearity		Χ	Χ			Χ	Χ	
Channel isolation / crosstalk		Χ	Χ					
Electrical susceptibility		Χ	X					
Thermal susceptibility	X	Χ	Χ		Χ	Χ	X	
Sensitivity to cosmic rays	X						Χ	
THERMAL CALIBRATION								Thermal Model
Power @ cold (0.1 K, 1.7 K, 4 K, 20 K, 300 K)			V		X		Χ	
Temperature sensors calibration Thermal model calibration			X		X X	Х	X	
			^		Λ	^	^	
PHOTOMETRIC CALIBRATION Photometric calibration (checkets calibration)		V	V			V	V	Dinalo(a)
Photometric calibration (absolute calibration)		X	X			X	X	Dipole(s)
Calibration stability (relative calibration)						Х	X	Charletinal
ATTITUDE Beam centre reconstruction / alignment				X (subset)	Х		X	Structural Model
Pointing reconstruction				A (Subset)	٨		X	Houei

COrE Optical calibration

Objective of test/ measurement	Requirements	On-ground (at what stage)	In-flight	Instrument model verification
Optical coupling at FPA	FWHM (Edge taper): 30dB Losses < 0.1dB Reflections: VSWR > 40dB Cross-polarization: <30dB	- Single detector - Module - Instrument	N/A	Compare to GRASP simulations Feeds/lenses prototypes
Main beam determination Both total intensity and polarization	FWHM per freq (value spread) Ellipticity < 1.1	- Single detector - Module RFQM (With telescope)	Direct measurements of main beam exploiting signals from ALL external planets Strong polarization sources: polarized beams	Compare to GRASP simulations Beam variation in-band
Sidelobe determination - near side-lobes, - far side-lobes Both total intensity and polarization	Rejection needed for: Galaxy, Sun, Earth, Moon 20dB lower than Planck	RFQM (With telescope)	Intermediate sidelobes down to -35 dB to -40 dB with Jupiter will be possible in-flight	Trade off edge taper with angular resolution Compare to GRASP simulations Beam variation in-band
Internal straylight	Limit background on detectors from - FPA environment - P/L environment - Baffle	- Single detector - Module - Instrument - CQM - PFM (at CSL)	May be able to test during cooldown	Thermal model Emissivity Baffle
Filter characterization	- Band definition (from comp sep) - Bandwidth (sensitivity) - Consider CO lines (and other moloecules)	- Unit/Module level - CQM (cryo conditions)	N/A	Filter models Filters prototypes

Planck RFQM & Optical Calibration

Planck RFQM campaign: QM mirrors and

QM mirrors and representative FPU and limited number of frequencies At room temperature

Frequency	AZ max RF (°)	EL max RF (°)
30	7.78	-1.85
70	6.09	2.53
100	5.40	-1.10
320	3.88	1.05

Table 1: Measured angular direction (main lobe)

COrE RFQM

Compare measured beam parameters with accurate optical model

Planck RFQM & Optical Calibration

Raw data timelifies SP9 simulations: during Jupiter crossing in beams

-Intermediate beams

-Full sky beams

<1% match between in-flight measurement and GRASP beam models (<0.3% in the 70 GHz)

Thales Alenia

REFERENCE: H-P-3-ASP-TR-1144

DATE:

15/11/2008

Page: 189/243 2 ISSUE: The nominal measurement for the high resolution cuts (phi=0° and phi=45°) are displayed and superimposed with the predictions in Table 5.3-2.

Main beams

Uncertainty in the main beam shape after ground test campaign (integrated power, in percent of total) as a function of angular radius from peak.

(70 GHz: horn 23); 100 GHz: horn 1; 353 GHz: horn 6).

