Optical testing

Bruno Maffei

Parameters needed from optical test

- Transmission / Gain
 - Possibly of each component
 - For sure for all integrated pixels
 - Sensitivity
 - Spectral response
- Main Beams
 - Full map for all pixels
 - Variation with frequency within band
 - X-pol main beam maps
- Far sidelobes
 - Ideally over 4π steradian
 - Check for contamination

Optical tests performed on Planck (and more generally on CMB experiments)

Transmission at component and/or instrument level

— HFI

- Use of Fourier Transform Spectrometer on some horns, all filters, all integrated pixels and on full instrument.
- Use of calibration source on overall instrument to measure sensitivity across integrated spectral bands.

— LFI

- Use of Vector Network Analyser on components and integrated detection chains
- Tests with loads of variable temperature

Planck Telescope: verification

- Mechanical alignment
- Photogrammetry
- Specific RF component added on FPU for ground tests
 - Extra horn + diode at 320 GHz (RTH)

Fig.3. The 320 GHz Reference Test Horn in Planck's Focal Plane

Contraves Space

Beam characterisation for Planck

- Measurement of all horns (beam cuts)
- Telescope beams not measured for all pixels (ground) RFQM / RFFM
 - One "pixel" for each band up to 320 GHz

Far sidelobes characterisation for Planck (RFQM)

Far sidelobes characterisation for Planck (RFQM)

Comparison between simulations and measurements

From Planck to COrE

Similarities

- Telescope
- Can re-use the same technology
- Can re-use verification / alignment procedures

Differences

- Many more pixels (10s to 1000s)
- More spectral bands (9 to 15?)
- Calibration needs more accuracy
 - due to increase sensitivity (x30) \rightarrow need to have a better understanding of the instrument / reduce systematics
- Different technology
 - Use of planar / lens technology with possibility of cold stop and potentially higher straylight

Higher measurement accuracy needed

- Will need to use more accurate equipment
 - FTS and broadband (as for HFI) not enough
 - Probably need to move to VNA-like system where amplitude and phase are measured with very large dynamic range
- Will need to be performed on separate components and integrated systems
- 1000s of detectors → which testing strategy?
 - Test on samples for components?
 - Then rely on integrated tests on overall instrument?
- But at the end of the day will need to include the definitive detector (bolometer or KID)
 - Back to previous measurement system?
 - How could we improve the accuracy?

Example on waveguide coupled flat lens

	Lens 2	
	90GHz	110GHz
Max Value	-39.8dB	-36.2dB
FWHM (deg)	21.4	18.4

	Lens 1	
	90GHz	110GHz
Max Value	-40.0dB	-35.9dB
FWHM (deg)	23.6	17.0

		Lens 6	
		90GHz	110GHz
	Max Value	-39.6dB	-35.9dB
	FWHM (deg)	23.0	19.9

Far field horn beam pattern with bolometer

Far Field / Near Field

3D EM near-field measurement with VNA

Reconstruction of far-field

Example 2: 3D near field measurement of a polyethylene lens @100GHz

FPU Technology

- 1000s of pixels \rightarrow Is it realistic to use horns?
- If European technology used
 - Use of planar / lens technology with possibility of cold stop and potentially higher straylight

Equivalent of RFQM beam measurement

- Telescope with a cold instrument in CTR?
 - Unlikely feasible by industry (Thales, Airbus space) or at a huge cost
 - Warm instrument → need to replace detector
 - Could we think of a test at Liege facility?

Design of cavity-backed sinuous CERN 17-20 Mantenna with baluns.

Conclusion

- Optical tests and more generally calibration will have to be thought well in advance
- Need to re-use what has been used for Planck as much as we can
- Do we need to include a test plan in the proposal?