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Primordial NG

® Measure Primordial NG to distinguish between

models of inflation (and other paradigms for the
early Universe)

® CMB:close to linear © but 2D ©

® | SS: highly non-linear © but 3D ©




Primordial NG

® Measure Primordial NG to distinguish between

models of inflation (and other paradigms for the
early Universe)

® CMB:close to linear © but 2D ©

® | SS: highly non-linear © but 3D ©

Many probes: cluster counts, galaxy
bispectrum, non-Gaussian bias etc.




Non-Gaussian bias

® Scale-dependent bias induced by fxr¢?: Abi(k) o %
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PNG in the CIB

® Very large comoving volume + low minimum
halo mass “resolved”

|

mitigate shot-noise + cosmic variance
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® At first order in perturbations:
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PNG in the CIB

® Very large comoving volume + low minimum
halo mass “resolved”

|

mitigate shot-noise + cosmic variance

® At first order in perturbations:
) X dx _ s
I(v,n) = / dz <£> a(z)],,(z)(l + 07 + ) + 23(&)
0

® GR projection effects: O(fx1) ~ 0.3
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Non-Gaussian bias in CIB
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Adding frequencies ~ multi-tracers
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Dust foreground removal
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Summary & QOutlook

® A combination of Planck + COrE+ could achieve
O'(fNL) ~ 0.5 — 0.6

with 40% of the sky provided dust emission is
cleaned at 7% level

® Possible to reach “natural” target fxu =1

® Having multiple frequency channels is crucial

® Theoretical uncertainties: Meff etc.




