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➔ http://portal.nersc.gov/project/mp107/index.html
Errard, Feeney, Peiris and Jaffe (JCAP, 2016)
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➔ We usually look at statistical foregrounds residuals, i.e. residuals due to 
the imperfect determination of spectral parameters because of the finite 
sensitivity of the instrument. In such case, the parametrization of the 
mixing matrix is always assumed to be correct.
➔ In addition, these foregrounds residuals are treated as an extra variance 
term for the estimation of cosmological parameters (as it is done in current 
forecasts for e.g. CMB-S4)
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➤ HOWEVER, real sky might not match the assumed modeling
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bias in the estimation of cosmological parameters
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cf. Bracco (2014)
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➔ the code considers spatial variations for the dust and synchrotron 
spectral indices (PSM maps for βd and βs) — e.g. Stolyarov et al (2005)
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Example of dust scaling law realizations, assuming various 
dispersions amplitude compared to fiducial scaling laws

100 simulations for each ! value

Josquin ERRARD, CERN, May 2016
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impact on the estimation of tensor-to-scalar ratio (I)

total B-modes

r=0.01

r=0.001

residuals curves below are averaged curves — but the case-
to-case variations *are* important

consistent with Errard 
et al (2011+12)
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impact on the estimation of tensor-to-scalar ratio (II)
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impact on the estimation of tensor-to-scalar ratio (II)

(1) an average of these 
distributions makes little 
sense as each 
histogram has very long 
tail

(2) there are cases which 
lead to very large 
biases ➤ details of the 
modeling are the key!

(3) it might be possible to 
resolve these bad cases 
by introducing more 
parameters ➤ need for 
effective 'goodness-of-
fit' statistics 
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Conclusions

I have presented a new general formalism which allows for a consistent
 estimation of the systematic and statistical foregrounds residuals 
for a given instrumental design;
evaluation of the resulting bias and uncertainty on cosmological 
parameters.

Features of the implementation:
numerical efficiency (sky simulation ➔ comp sep ➔ estimation of r ~ O(5 sec)/
proc) — not limited by values of "max;
 obtained results are averages over noise realizations (and doing many sky 
simulation is cheap);
 applicable to any sky model as the input, allowing for arbitrary scaling relations 
and their spatial variability;
 applicable to any set of cosmological parameters;
 can be trivially extended to include iterative delensing as in Errard, Feeney et al 
(2016);
 can accommodate many spectral parameters as driven by the data at hand.
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